832 resultados para Perfectly Plastic
Resumo:
In this work, two families of asymptotic near-tip stress fields are constructed in an elastic-ideally plastic FCC single crystal under mode I plane strain conditions. A crack is taken to lie on the (010) plane and its front is aligned along the [(1) over bar 01] direction. Finite element analysis is first used to systematically examine the stress distributions corresponding to different constraint levels. The general framework developed by Rice (Mech Mater 6:317-335, 1987) and Drugan (J Mech Phys Solids 49:2155-2176, 2001) is then adopted to generate low triaxiality solutions by introducing an elastic sector near the crack tip. The two families of stress fields are parameterized by the normalized opening stress (tau(A)(22)/tau(o)) prevailing in the plastic sector in front of the tip and by the coordinates of a point where elastic unloading commences in stress space. It is found that the angular stress variations obtained from the analytical solutions show good agreement with finite element analysis.
Resumo:
Using dimensional analysis and finite element calculations we derive several scaling relationships for conical indentation into elastic-perfectly plastic solids. These scaling relationships provide new insights into the shape of indentation curves and form the basis for understanding indentation measurements, including nano- and micro-indentation techniques. They are also helpful as a guide to numerical and finite element calculations of conical indentation problems. Finally, the scaling relationships are used to reveal the general relationships between hardness, contact area, initial unloading slope, and mechanical properties of solids.
Resumo:
In this paper, fundamental equations of the plane strain problem based on the 3-dimensional plastic flow theory are presented for a perfectly-plastic solid The complete governing equations for the growing crack problem are developed. The formulae for determining the velocity field are derived.The asymptotic equation consists of the premise equation and the zero-order governing equation. It is proved that the Prandtl centered-fan sector satisfies asymptotic equation but does not meet the needs of hlgher-order governing equations.
Optimal displacement mechanisms beneath shallow foundations on linear-elastic perfectly plastic soil
Resumo:
An energy method for a linear-elastic perfectly plastic method utilising the von Mises yield criterion with associated flow developed in 2013 by McMahon and co-workers is used to compare the ellipsoidal cavity-expansion mechanism, from the same work, and the displacement fields of other research by Levin, in 1995, and Osman and Bolton, in 2005, which utilise the Hill and Prandtl mechanisms respectively. The energy method was also used with a mechanism produced by performing a linear-elastic finite-element analysis in Abaqus. At small values of settlement and soil rigidity the elastic mechanism provides the lowest upper-bound solution, and matches well with finite-element analysis results published in the literature. At typical footing working loads and settlements the cavity-expansion mechanism produces a more optimal solution than the displacement fields within the Hill and Prandtl mechanisms, and also matches well with the published finite-element analysis results in this range. Beyond these loads, at greater footing settlements, or soil rigidity, the Prandtl mechanism is shown to be the most appropriate.
Resumo:
The problems of plasticity and non-linear fracture mechanics have been generally recognized as the most difficult problems of solid mechanics. The present dissertation is devoted to some problems on the intersection of both plasticity and non-linear fracture mechanics. The crack tip is responsible for the crack growth and therefore is the focus of fracture science. The problem of crack has been studied by an army of outstanding scholars and engineers in this century, but has not, as yet, been solved for many important practical situations. The aim of this investigation is to provide an analytical solution to the problem of plasticity at the crack tip for elastic-perfectly plastic materials and to apply the solution to a classical problem of the mechanics of composite materials.^ In this work, the stresses inside the plastic region near the crack tip in a composite material made of two different elastic-perfectly plastic materials are studied. The problems of an interface crack, a crack impinging an interface at the right angle and at arbitrary angles are examined. The constituent materials are assumed to obey the Huber-Mises yielding condition criterion. The theory of slip lines for plane strain is utilized. For the particular homogeneous case these problems have two solutions: the continuous solution found earlier by Prandtl and modified by Hill and Sokolovsky, and the discontinuous solution found later by Cherepanov. The same type of solutions were discovered in the inhomogeneous problems of the present study. Some reasons to prefer the discontinuous solution are provided. The method is also applied to the analysis of a contact problem and a push-in/pull-out problem to determine the critical load for plasticity in these classical problems of the mechanics of composite materials.^ The results of this dissertation published in three journal articles (two of which are under revision) will also be presented in the Invited Lecture at the 7$\rm\sp{th}$ International Conference on Plasticity (Cancun, Mexico, January 1999). ^
Resumo:
A perfectly plastic von Mises model is proposed to study the elastic-plastic behavior of a porous hierarchical scaffold used for bone regeneration. The proposed constitutive model is implemented in a finite element (FE) routine to obtain the stress-strain relationship of a uniaxially loaded cube of the scaffold, whose constituent is considered to be composed of cortical bone. The results agree well with experimental data for uniaxial loading case of a cancellous bone. We find that the unhomogenized stress distribution results in different mechanical properties from but still comparable to our previous theory. The scaffold is a promising candidate for bone regeneration.
Resumo:
The relationship is determined between saturated duration of rectangular pressure pulses applied to rigid, perfectly plastic structures and their fundamental periods of elastic vibration. It is shown that the ratio between the saturated duration and the fundamental period of elastic vibration of a structure is dependent upon two factors: the first one is the slenderness or thinness ratio of the structure; and the second one is the square root of ratio between the Young's elastic modulus and the yield stress of the structural material. Dimensional analysis shows that the aforementioned ratio is one of the basic similarity parameters for elastic-plastic modeling under dynamic loading.
Resumo:
A dimensionless number, termed response number in the present paper, is suggested for the dynamic plastic response of beams and plates made of rigid-perfectly plastic materials subjected to dynamic loading. It is obtained at dimensional reduction of the basic governing equations of beams and plates. The number is defined as the product of the Johnson's damage number and the square of the half of the slenderness ratio for a beam; the product of the damage number and the square of the half of the aspect ratio for a plate or membrane loaded dynamically. Response number can also be considered as the ratio of the inertia force at the impulsive loading to the plastic limit load of the structure. Three aspects are reflected in this dimensionless number: the inertia of the applied dynamic loading, the resistance ability of the material to the deformation caused by the loading and the geometrical influence of the structure on the dynamic response. For an impulsively loaded beam or plate, the final dimensionless deflection is solely dependent upon the response number. When the secondary effects of finite deflections, strain-rate sensitivity or transverse shear are taken into account, the response number is as useful as in the case of simple bending theory. Finally, the number is not only suitable to idealized dynamic loads but also applicable to dynamic loads of general shape.
Resumo:
A constitutive equation is developed for geometrically-similar sharp indentation of a material capable of elastic, viscous, and plastic deformation. The equation is based on a series of elements consisting of a quadratic (reversible) spring, a quadratic (time-dependent, reversible) dashpot, and a quadratic (time-independent, irreversible) slider-essentially modifying a model for an elastic-perfectly plastic material by incorporating a creeping component. Load-displacement solutions to the constitutive equation are obtained for load-controlled indentation during constant loading-rate testing. A characteristic of the responses is the appearance of a forward-displacing "nose" during unloading of load-controlled systems (e.g., magnetic-coil-driven "nanoindentation" systems). Even in the absence of this nose, and the associated initial negative unloading tangent, load-displacement traces (and hence inferred modulus and hardness values) are significantly perturbed on the addition of the viscous component. The viscous-elastic-plastic (VEP) model shows promise for obtaining material properties (elastic modulus, hardness, time-dependence) of time-dependent materials during indentation experiments.
Resumo:
An experimental investigation into the effect of microstructural changes, which occur during post-extrusion annealing of a Mg based AZ21 alloy, on tensile and fatigue properties is conducted. Mechanical properties in the as-cast, as-extruded, and microstructural states that correspond to recovery, recrystallization and grain growth stages of annealing are compared. Results show that these microstructural changes do not alter the yield strength of the alloy markedly whereas significant differences were noted in the ultimate tensile strength as well as ductility. The initiation of abnormal grain growth (or secondary recrystallization) renders the tensile stress-strain response elastic perfectly plastic and results in a large drop in ductility, as high as similar to 60% during intermediate stages of abnormal grain growth, vis-A-vis the ductility of the as-extruded alloy. While the fatigue performance of all the wrought alloys is far superior to as expected, abnormal grain growth leads to a marked decrease in the endurance that of the as-cast alloy, limit. Possible microscopic origins of these are discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work, the effect of lattice orientation on the fields prevailing near a notch tip is investigated pertaining to various constraint levels in FCC single crystals. A modified boundary layer formulation is employed and numerical solutions under mode I, plane strain conditions are generated by assuming an elastic-perfectly plastic FCC single crystal. The analysis is carried out corresponding to different lattice orientations with respect to the notch line. It is found that the near-tip deformation field, especially the development of kink or slip shear bands is sensitive to the constraint level. The stress distribution and the size and shape of the plastic zone near the notch tip are also strongly influenced by the level of T-stress. The present results clearly establish that ductile single crystal fracture geometries would progressively lose crack tip constraint as the T-stress becomes more negative irrespective of lattice orientation. Also, the near-tip field for a range of constraint levels can be characterized by two-parameters such as K-T or J-Q as in isotropic plastic solids.