235 resultados para Perfection
Resumo:
Controlling the crystallographic phase purity of III-V nanowires is notoriously difficult, yet this is essential for future nanowire devices. Reported methods for controlling nanowire phase require dopant addition, or a restricted choice of nanowire diameter, and only rarely yield a pure phase. Here we demonstrate that phase-perfect nanowires, of arbitrary diameter, can be achieved simply by tailoring basic growth parameters: temperature and V/III ratio. Phase purity is achieved without sacrificing important specifications of diameter and dopant levels. Pure zinc blende nanowires, free of twin defects, were achieved using a low growth temperature coupled with a high V/III ratio. Conversely, a high growth temperature coupled with a low V/III ratio produced pure wurtzite nanowires free of stacking faults. We present a comprehensive nucleation model to explain the formation of these markedly different crystal phases under these growth conditions. Critical to achieving phase purity are changes in surface energy of the nanowire side facets, which in turn are controlled by the basic growth parameters of temperature and V/III ratio. This ability to tune crystal structure between twin-free zinc blende and stacking-fault-free wurtzite not only will enhance the performance of nanowire devices but also opens new possibilities for engineering nanowire devices, without restrictions on nanowire diameters or doping.
Resumo:
Undoped, S-doped and Fe-doped InP crystals with diameter up to 4-inch have been pulled in drop 10 0 drop -direction under P-rich condition by a rapid P-injection in situ synthesis liquid encapsulated Czochralski (LEC) method. High speed photoluminescence mapping, etch-pit density (EPD) mapping and scanning electron microscopy have been used to characterize the samples of the single crystal ingots. Dislocations and electrical homogeneity of these samples are investigated and compared. By controlling the thermal field and the solid-liquid interface shape, 4-inch low-EPD InP single crystals have been successfully grown by the rapid P-injection synthesis LEC method. The EPD across the wafer of the ingots is less than 5 x 10(4) cm(-2). Cluster defects with a pore center are observed in the P-rich LEC grown InP ingots. These defects are distributed irregularly on a wafer and are surrounded by a high concentration of dislocations. The uniformity of the PL intensity across the wafer is influenced by these defects. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Double-crystal X-ray diffraction and I-V characterization have been carried out on the GSMBE grown SiGe/Si p-n heterojunction materials. Results show that the SiGe alloys crystalline quality and the misfit dislocations are critical influences on the reverse leakage current. The crystal perfection and/or the degree of metastability of the Sice alloys have been estimated in terms of the model proposed by Tsao with the experimental results. High-quality p-n heterojunction diodes can be obtained by optimizing the SiGe alloy structures, which limit the alloys in the metastable states. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Double-crystal X-ray diffraction and I-V characterization have been carried out on the GSMBE grown SiGe/Si p-n heterojunction materials. Results show that the SiGe alloys crystalline quality and the misfit dislocations are critical influences on the reverse leakage current. The crystal perfection and/or the degree of metastability of the Sice alloys have been estimated in terms of the model proposed by Tsao with the experimental results. High-quality p-n heterojunction diodes can be obtained by optimizing the SiGe alloy structures, which limit the alloys in the metastable states. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The synthesis of NaA zeolite membrane on a porous alpha -Al2O3 support from clear solution and the evaluation of the perfection of the as-synthesized membrane by gas permeation were investigated. When an unseeded support was used, the NaA zeolite began to transform into other types of zeolites before a continuous NaA zeolite membrane formed. When the support was coated with nucleation seeds, not only the formation of NaA zeolite on the support surface was accelerated, but also the transformation of NaA zeolite into other types of zeolites was inhibited. A continuous NaA zeolite membrane can be formed. Perfection evaluation indicated that the NaA zeolite membrane with the synthesis time of 3 h showed the best perfection after a one-stage synthesis. The perfection of NaA zeolite membrane can be improved by employing the multi-stage synthesis method. The NaA zeolite membrane with a synthesis time of 2 h after a two-stage synthesis showed the best gas permeation performance, The permselectivity of H-2/n-C4H10 and O-2/N-2 were 19.1 and 1.8, respectively, higher than those of the corresponding Knudsen diffusion selectivity of 5.39 and 0.94, which showed the molecular sieving effect of NaA zeolite. However, the permeation of n-C4H10 also indicated that the NaA zeolite membrane had certain defects, the diameter of which were larger than the NaA zeolite channels. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
http://www.archive.org/details/wemusttwentytwo00chinuoft