907 resultados para Perennial Forage Grasses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Literature cited: p. 100-116.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Levels of lignin and hydroxycinnamic acid wall components in three genera of forage grasses (Lolium,Festuca and Dactylis) have been accurately predicted by Fourier-transform infrared spectroscopy using partial least squares models correlated to analytical measurements. Different models were derived that predicted the concentrations of acid detergent lignin, total hydroxycinnamic acids, total ferulate monomers plus dimers, p-coumarate and ferulate dimers in independent spectral test data from methanol extracted samples of perennial forage grass with accuracies of 92.8%, 86.5%, 86.1%, 59.7% and 84.7% respectively, and analysis of model projection scores showed that the models relied generally on spectral features that are known absorptions of these compounds. Acid detergent lignin was predicted in samples of two species of energy grass, (Phalaris arundinacea and Pancium virgatum) with an accuracy of 84.5%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Warm-season grasses are economically important for cattle production in tropical regions, and tools to aid in management and research of these forages would be highly beneficial. Crop simulation models synthesize numerous physiological processes and are important research tools for evaluating production of warm-season grasses. This research was conducted to adapt the perennial CROPGRO Forage model to simulate growth of the tropical species palisadegrass [Brachiaria brizantha (A. Rich.) Stapf. cv. Xaraes] and to describe model adaptation for this species. In order to develop the CROPGRO parameters for this species, we began with values and relationships reported in the literature. Some parameters and relationships were calibrated by comparison with observed growth, development, dry matter accumulation and partitioning during a 2-year experiment with Xaraes palisadegrass in Piracicaba, SP, Brazil. Starting with parameters for the bahiagrass (Paspalum notatum Flugge) perennial forage model, dormancy effects had to be minimized, and partitioning to storage tissue/root decreased, and partitioning to leaf and stem increased to provide for more leaf and stem growth and less root. Parameters affecting specific leaf area (SLA) and senescence of plant tissues were improved. After these changes were made to the model, biomass accumulation was better simulated, mean predicted herbage yield per cycle was 3573 kg ha(-1), with a RMSE of 538 kg DM ha(-1) (D-Stat = 0.838, simulated/observed ratio = 1.028). The results of the adaptation suggest that the CROPGRO model is an efficient tool to integrate physiological aspects of palisadegrass and can be used to simulate growth. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Warm-season grasses are economically important for cattle production in tropical regions and tools to aid in management and research on these forages would be highly beneficial both in research and the industry. This research was conducted to adapt the CROPGRO-Perennial Forage model to simulate growth of the tropical species guineagrass (Panicum maximum Jacq. cv. 'Tanzania') and to describe model adaptation for this species. To develop the CROPGRO parameters for this species, we began with values and relationships reported in the literature. Some parameters and relationships were calibrated by comparison with observed growth, development, dry matter accumulation, and partitioning during a 17-mo experiment with Tanzania guineagrass in Piracicaba, SP, Brazil. Compared with starting parameters for palisadegrass [Brachiaria brizantha (A. Rich.) Stapf. cv. 'Xaraes'], dormancy effects of the perennial forage model had to be minimized, partitioning to storage tissue or root decreased, and partitioning to leaf and stem increased to provide for more leaf and stem growth and less root. Parameters affecting specific leaf area and senescence of plant tissues were improved. After these changes were made to the model, biomass accumulation was better simulated, mean predicted herbage yield was 6576 kg ha(-1), averaged across 11 regrowth cycles of 35 (summer) or 63 d (winter), with a RMSE of 494 kg ha(-1) (Willmott's index of agreement d = 0.985, simulated/observed ratio = 1.014). The model also gave good predictions against an independent data set, with similar RMSE, ratio, and d. The results of the adaptation suggest that the CROPGRO model is an efficient tool to integrate physiological aspects of guineagrass and can be used to simulate growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major constraint to agricultural production in acid soils of tropical regions is the low soil P availability, due to the high adsorption capacity, low P level in the source material and low efficiency of P uptake and use by most of the modern varieties grown commercially. This study was carried out to evaluate the biomass production and P use by forage grasses on two soils fertilized with two P sources of different solubility. Two experiments were carried out, one for each soil (Cambisol and Latosol), using pots filled with 4 dm³ soil in a completely randomized design and a 4 x 2 factorial scheme. The treatments consisted of a combination of four forage plants (Brachiaria decumbens, Brachiaria brizantha, Pennisetum glaucum and Sorghum bicolor) with two P sources (Triple Superphosphate - TSP and Arad Reactive Phosphate - ARP), with four replications. The forage grasses were harvested at pre-flowering, when dry matter weight and P concentrations were measured. Based on the P concentration and dry matter production, the total P accumulation was calculated. With these data, the following indices were calculated: the P uptake efficiency of roots, P use efficiency, use efficiency of available P, use efficiency of applied P and agronomic efficiency. The use of the source with higher solubility (TSP) resulted, generally, in higher total dry matter and total P accumulation in the forage grasses, in both soils. For the less reactive source (ARP), the means found in the forage grasses, for use efficiency and efficient use of available P, were always higher when grown in Latosol, indicating favorable conditions for the solubility of ARP. The total dry matter of Brachiaria brizantha was generally higher, with low P uptake, accumulation and translocation, which indicated good P use efficiency for both P sources and soils. The forage plants differed in the P use potential, due to the sources of the applied P and of the soils used. Less than 10 % of the applied P was immobilized in the forage dry matter. Highest values were observed for TSP, but this was not reflected in a higher use efficiency of P from this source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dry matter yield and chemical composition of forage grasses harvested from an area degraded by urban solid waste deposits were evaluated. A split-plot scheme in a randomized block design with four replicates was used, with five grasses in the plots and three harvests in the subplots. The mineral content and extraction and heavy metal concentration were evaluated in the second cut, using a randomized block design with five grasses and four replicates. The grasses were Brachiaria decumbens cv. Basilisk, Brachiaria ruziziensis, Brachiaria brizantha cv. Marandu and cv. Xaraés, and Panicum maximum cv. Tanzânia, cut at 42 days of regrowth. The dry matter yield per cut reached 1,480 kg ha-1; the minimum crude protein content was 9.5% and the average neutral detergent fiber content was 62.3%. The dry matter yield of grasses was satisfactory, and may be an alternative for rehabilitating areas degraded by solid waste deposits. The concentration of heavy metals in the plants was below toxicity levels; the chemical composition was appropriate, except for phosphorus. The rehabilitated areas may therefore be used for grazing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Typescript (photocopy)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Aims Dormancy has been extensively studied in plants which experience severe winter conditions but much less so in perennial herbaceous plants that must survive summer drought. This paper reviews the current knowledge on summer dormancy in both native and cultivated perennial temperate grasses originating from the Mediterranean Basin, and presents a unified terminology to describe this trait. Scope Under severe drought, it is difficult to separate the responses by which plants avoid and tolerate dehydration from those associated with the expression of summer dormancy. Consequently, this type of endogenous (endo-) dormancy can be tested only in plants that are not subjected to moisture deficit. Summer dormancy can be defined by four criteria, one of which is considered optional: (1) reduction or cessation of leaf production and expansion; (2) senescence of mature foliage; (3) dehydration of surviving organs; and (4, optional) formation of resting organs. The proposed terminology recognizes two levels of summer dormancy: (a) complete dormancy, when cessation of growth is associated with full senescence of foliage and induced dehydration of leaf bases; and (b) incomplete dormancy, when leaf growth is partially inhibited and is associated with moderate levels of foliage senescence. Summer dormancy is expressed under increasing photoperiod and temperature. It is under hormonal control and usually associated with flowering and a reduction in metabolic activity in meristematic tissues. Dehydration tolerance and dormancy are independent phenomena and differ from the adaptations of resurrection plants. Conclusions Summer dormancy has been correlated with superior survival after severe and repeated summer drought in a large range of perennial grasses. In the face of increasing aridity, this trait could be used in the development of cultivars that are able to meet agronomic and environmental goals. It is therefore important to have a better understanding of the genetic and environmental control of summer dormancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of trials to increase understanding of the summer dormancy trait in Dactylis glomerata was conducted. Autumn-sown reproductive and younger, spring-sown plants of 2 drought-resistant cultivars, contrasting for summer dormancy, were established and then tested in summer 2002 under long drought, drought + midsummer storm, or full irrigation. The autumn-sown reproductive plants of cv. Kasbah were summer dormant under all moisture regimes and exhibited the characteristic traits including growth cessation, rapid herbage senescence, and dehydration of surviving organs (-6.7MPa). Cultivar Kasbah used 8% less soil water over the summer and also began to rehydrate its leaf bases from conserved soil water before the drought broke. The non-dormant cv. Medly grew for 10 days longer under drought and whenever moisture was applied; Medly also responded to the storm with a decline in dehydrin expression in leaf bases, whereas no decline occurred in Kasbah, presumably because it remained dormant and therefore much drier. The irrigated, younger, spring-sown swards of cv. Kasbah had restrained growth and produced only about 25% of the herbage of cv. Medly. Drought reduced activity and growth of young plants of both cultivars, but whereas Medly regrew in response to the storm, cv. Kasbah did not, indicating that dormancy, although only partially expressed after spring sowing, was reinforced by summer drought. A longer drought in 2003 caused a 22% loss of the basal cover in cv. Medly, whereas Kasbah fully maintained its sward and therefore produced a higher post-drought autumn yield. This work confirms summer dormancy as a powerful trait for improving persistence over long, dry summers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effects of combined nitrogen and sulphur fertilisation on the dynamics of leaf and tiller appearance in Marandu palisadegrass (Brachiaria brizantha cv. Marandu) and its impact on dry matter production were evaluated in a greenhouse study. Grass seedlings were grown in pots filled with a soil classified as an Entisol and were harvested after 43 days, a further 35 days and finally after 48 more days. Five rates of N (0, 100, 200, 300 and 400 mg/dm(3)) and 5 rates of S (0, 10, 20, 30 and 40 mg/dm(3)) were tested in an incomplete factorial design with 4 replications. Leaf and tiller development were monitored every 3 days by counting the appearance of recently expanded leaves and new basal tillers. The phyllochron and thermal time between appearance of tillers decreased as N and S fertiliser levels increased to about 300 and 25 mg/dm(3), respectively, then tended to increase. In contrast, leaf and tiller appearance rates increased with the supply of these nutrients to similar levels, then tended to decline. Leaf and tiller production and dry matter yields were affected by both N and S levels, with the role of S increasing as the growth phases increased.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The growth and biomass allocation responses of the tropical forage grasses Brachiaria brizantha cv. Marandu and B. humidicola were compared for plants grown outdoors, in pots, in full sunlight and those shaded to 30% of full sunlight over a 30day period. The objective was to evaluate the acclimation capacity of these species to low light. Both species were able to quickly develop phenotypic adjustments in response to low light. Specific leaf area and leaf area ratio were higher for low-light plants during the entire experimental period. Low-light plants allocated significantly less biomass to root and more to leaf tissue than high-light plants. However, the biomass allocation pattern to culms was different for the two species under low light: it increased in B. brizantha, but decreased in B. humidicola, probably as a reflection of the growth habits of these species. Relative growth rate and tillering were higher in high-light plants. Leaf elongation rate was significantly increased on both species under low light; however, the difference between treatments was higher in B. brizantha. These results are discussed in relation to the pasture management implications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)