872 resultados para Percolation thresholds


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a mechanistic modeling methodology to predict both the percolation threshold and effective conductivity of infiltrated Solid Oxide Fuel Cell (SOFC) electrodes. The model has been developed to mirror each step of the experimental fabrication process. The primary model output is the infiltrated electrode effective conductivity which provides results over a range of infiltrate loadings that are independent of the chosen electronically conducting material. The percolation threshold is utilized as a valuable output data point directly related to the effective conductivity to compare a wide range of input value choices. The predictive capability of the model is demonstrated by favorable comparison to two separate published experimental studies, one using strontium molybdate and one using La0.8Sr0.2FeO3-δ as infiltrate materials. Effective conductivities and percolation thresholds are shown for varied infiltrate particle size, pore size, and porosity with the infiltrate particle size having the largest impact on the results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a mechanistic modeling methodology to predict both the percolation threshold and effective conductivity of infiltrated Solid Oxide Fuel Cell (SOFC) electrodes. The model has been developed to mirror each step of the experimental fabrication process. The primary model output is the infiltrated electrode effective conductivity which provides results over a range of infiltrate loadings that are independent of the chosen electronically conducting material. The percolation threshold is utilized as a valuable output data point directly related to the effective conductivity to compare a wide range of input value choices. The predictive capability of the model is demonstrated by favorable comparison to two separate published experimental studies, one using strontium molybdate and one using La0.8Sr0.2FeO3-delta as infiltrate materials. Effective conductivities and percolation thresholds are shown for varied infiltrate particle size, pore size, and porosity with the infiltrate particle size having the largest impact on the results. (C) 2013 The Electrochemical Society. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A brief qualitative comparison is made of perovskite ABO sub 3 and layered perovskite ABO sub 3 and layered perovskite A sub 2 BO sub 4 oxides with special emphasis on the influence of geometrical factors on certain physico-chemical properties. The layered perovskite oxides are distinguished from three-dimensional oxides by a looser packing, frustration in three-dimensional interactions, more internal pressure on B--O bonds for small tolerance factors, and by different values of site-percolation thresholds. Their influence on electronic configurations of metal ions, stabilities and syntheses of compounds is discussed. The influence of increased anisotropy in layered oxides on localisation of charge carriers and in suppressing the onset of long-range ferromagnetic ordering is also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High pressure electrical resistivity measurements were carried out on GexSe100-x (0 less-than-or-equal-to x less-than-or-equal-to 40) glasses at ambient and low temperatures using the Bridgman anvil system. All the melt quenched glasses show a discontinuous glassy semiconductor to crystalline metal transition at high pressures. The high pressure phases of Ge-Se samples do not correspond to any of the equilibrium phases of the system. Additionally, the variation of transition pressure (P(T)), ambient resistivity (rho0) and the activation energy (DELTAE(t)) with composition, exhibit a change in behaviour at x = 20 and 33. The unusual variations observed in these glasses are discussed in the light of chemical and percolation thresholds occurring in the glassy system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We find that different geographical structures of networks lead to varied percolation thresholds, although these networks may have similar abstract topological structures. Thus, strategies for enhancing robustness and immunization of a geographical network are proposed. Using the generating function formalism, we obtain an explicit form of the percolation threshold q(c) for networks containing arbitrary order cycles. For three-cycles, the dependence of q(c) on the clustering coefficients is ascertained. The analysis substantiates the validity of the strategies with analytical evidence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Javier G. P. Gamarra and Ricard V. Sole (2002). Biomass-diversity responses and spatial dependencies in disturbed tallgrass prairies. Journal of Theoretical Biology, 215 (4) pp.469-480 RAE2008

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, the processing and characterization of Polyamide 6 (PA6) / graphite nanoplatelets
(GNPs) composites is reported. PA6/GNPs composites were prepared by melt-mixing using an
industrial, co-rotating, intermeshing, twin-screw extruder. A bespoke screw configuration was used
that was designed in-house to enhance nanoparticle dispersion into a polymer matrix. The effects of
GNPs type (xGnP® M-5 and xGnP® C-500), GNPs content, and extruder screw speed on the bulk
properties of the PA6/GNPs nanocomposites were investigated. Results show a considerable
improvement in the thermal and mechanical properties of PA6/GNPs composites, as compared with
the unfilled PA6 polymer. An increase in crystallinity (%Xc) with increasing GNPs content, and a
change in shape of the crystallization exotherms (broadening) and melting endotherms, both suggest a
change in the crystal type and perfection. An increase in tensile modulus of as much as 376% and
412% was observed for PA6/M-5 xGnP® and PA6/C-500 xGnP® composites, respectively, at filler
contents of 20wt%. The enhancement of Young’s modulus and yield stress can be attributed to the
reinforcing effect of GNPs and their uniform dispersion in the PA6 matrix. The rheological response
of the composite resembles that of a ‘pseudo-solid’, rather than a molten liquid, and analysis of the
rheological data indicates that a percolation threshold was reached at GNPs contents of between 10–
15wt%. The electrical conductivity of the composite also increased with increasing GNPs content,
with an addition of 15wt% GNPs resulting in a 6 order-of-magnitude increase in conductivity. The
electrical percolation thresholds of all composites were between 10–15wt%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of magnetic dilution and applied pressure on frustrated spinels GeNi2O4, GeCo2O4, and NiAl2O4 are reported. Dilution was achieved by substitution of Mg2+ in place of magnetically active Co2+ and Ni2+ ions. Large values of the percolation thresholds were found in GeNi(2-x)MgxO4. Specifically, pc1 = 0.74 and pc2 = 0.65 in the sub-networks associated with the triangular and kagome planes, respectively. This anomalous behaviour may be explained by the kagome and triangular planes behaving as coupled networks, also know as a network of networks. In simulations of coupled lattices that form a network of networks, similar anomalous percolation threshold values have been found. In addition, at dilution levels above x=0.30, there is a T^2 dependency in the magnetic heat capacity which may indicate two dimensional spin glass behaviour. Applied pressures in the range of 0 GPa to 1.2 GPa yield a slight decrease in ordering temperature for both the kagome and triangular planes. In GeCo(2-x)MgxO4, the long range magnetic order is more robust with a percolation threshold of pc=0.448. Similar to diluted nickel germanate, at low temperatures, a T^2 magnetic heat capacity contribution is present which indicates a shift from a 3D ordered state to a 2D spin glass state in the presence of increased dilution. Dynamic magnetic susceptibility data indicate a change from canonical spin glass to a cluster glass behaviour. In addition, there is a non-linear increase in ordering temperature with applied pressure in the range P = 0 to 1.0 GPa. A spin glass ground state was observed in Ni(1-x)MgxAl2O4 for (x=0 to 0.375). Analysis of dynamic magnetic susceptibility data yield a characteristic time of tau* = 1.0x10^(-13) s, which is indicative of canonical spin glass behaviour. This is further corroborated by the linear behaviour of the magnetic specific heat contribution. However, the increasing frequency dependence of the freezing temperature suggests a trend towards spin cluster glass formation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using digitized images of the three-dimensional, branching structures for root systems of bean seedlings, together with analytical and numerical methods that map a common susceptible-infected- recovered (`SIR`) epidemiological model onto the bond percolation problem, we show how the spatially correlated branching structures of plant roots affect transmission efficiencies, and hence the invasion criterion, for a soil-borne pathogen as it spreads through ensembles of morphologically complex hosts. We conclude that the inherent heterogeneities in transmissibilities arising from correlations in the degrees of overlap between neighbouring plants render a population of root systems less susceptible to epidemic invasion than a corresponding homogeneous system. Several components of morphological complexity are analysed that contribute to disorder and heterogeneities in the transmissibility of infection. Anisotropy in root shape is shown to increase resilience to epidemic invasion, while increasing the degree of branching enhances the spread of epidemics in the population of roots. Some extension of the methods for other epidemiological systems are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ITO nanowires were synthesized by carbothermal reduction process, using a co-evaporation method, and have controlled size, shape, and chemical composition. The electrical measurements of nanowires showed they have a resistance of about 102 Ω. In order to produce nanocomposites films, nanowires were dispersed in toluene using an ultrasonic cleaner, so the PMMA polymer was added, and the system was kept under agitation up to obtain a clear suspension. The PMMA polymer was filled with 1, 2, 5 and 10% in weight of nanowires, and the films were done by tape casting. The results showed that the electrical resistance of nanocomposites changed by over 7 orders of magnitude by increasing the amount of filler, and using 5 wt% of filler the composite resistance decreased from 1010 Ω to about 104 Ω, which means that percolation threshold of wires occurred at this concentration. This is an interesting result once for nanocomposites filled with ITO nanoparticles is necessary about 18% in weight to obtain percolation. The addition of filler up to 10 wt% decreased the resistance of the composite to 103 Ω, which is a value close to the resistance of wires. The composites were also analyzed by transmission electron microscopy (TEM), and the TEM results are in agreement with the electrical ones about percolation of nanowires. These results are promising once indicates that is possible to produce conductive and transparent in the visible range films by the addition of ITO nanowires in a polymeric matrix using a simple route. © 2011 Materials Research Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Novel poly(phenylene sulphide) (PPS) nanocomposites reinforced with an aminated derivative (PPS-NH2) covalently attached to acid-treated single-walled carbon nanotubes (SWCNTs) were prepared via simple melt-blending technique. Their morphology, viscoelastic behaviour, electrical conductivity, mechanical and tribological properties were investigated. Scanning electron microscopy revealed that the grafting process was effective in uniformly dispersing the SWCNTs within the matrix. The storage and loss moduli as a function of frequency increased with the SWCNT content, tending to a plateau in the low-frequency regime. The electrical conductivity of the nanocomposites was considerably enhanced in the range 0.1?0.5 wt% SWCNTs; electrical and rheological percolation thresholds occurred at similar nanotube concentrations. Mechanical tests demonstrated that with only 1.0 wt% SWCNTs the Young's modulus and tensile strength of the matrix improved by 51 and 37%, respectively, without decrement in toughness, ascribed to a very efficient load transfer. A moderate decrease in the friction coefficient and a 75% reduction in wear rate were found for the abovementioned nanotube loading, indicating that PPS-NH2-g-SWCNTs are good tribological additives for thermoplastic polymers. Based on the promising results obtained in this work, it is expected that these nanofillers will be used to develop high-performance thermoplastic/CNT nanocomposites for structural applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The variation of resistivity in an amorphous As30Te70-xSix system of glasses with high pressure has been studied for pressures up to 8 GPa. It is found that the electrical resistivity and the conduction activation energy decrease continuously with increase in pressure, and samples become metallic in the pressure range 1.0-2.0 GPa. Temperature variation studies carried out at a pressure of 0.92 GPa show that the activation energies lie in the range 0.16-0.18eV. Studies on the composition/average co-ordination number (r) dependence of normalized electrical resistivity at different pressures indicate that rigidity percolation is extended, the onset of the intermediate phase is around (r) = 2.44, and completion at (r) = 2.56, respectively, while the chemical threshold is at (r) = 2.67. These results compare favorably with those obtained from electrical switching and differential scanning calorimetric studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrical switching and differential scanning calorimetric studies are undertaken on bulk As20Te80-xGax glasses, to elucidate the network topological thresholds. It is found that these glasses exhibit a single glass transition (T-g) and two crystallization reactions (T-cl & T-c2) upon heating. It is also found that there is only a marginal change in T-g with the addition of up to about 10% of Ga; around this composition an increase is seen in 7, which culminates in a local maximum around x = 15. The decrease exhibited in T, beyond this composition, leads to a local minimum at x = 17.5. Further, the As20Te80-xGax glasses are found to exhibit memory type electrical switching. The switching voltages (VT) increase with the increase in gallium content and a local maximum is seen in V-tau around x = 15. VT is found to decrease with x thereafter, exhibiting a local minimum around x = 17.5. The composition dependence of T-cl is found to be very similar to that of V-T of As20Te80-xGax glasses. Based on the present results, it is proposed that the composition x = 15 and x = 17.5 correspond to the rigidity percolation and chemical thresholds, respectively, of As20Te80-xGax glasses. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been possible to identify two critical compositions in the IV-VI chalcogenide glassy system GexSe100-x by the anomalous variations of the high-pressure electrical resistivity behavior. The first critical composition, the chemical threshold, refers to the stoichiometric composition. The second critical composition, identified recently as the mechanical percolation threshold, is connected with the structural rigidity of the material.