985 resultados para Perceptual learning.
Resumo:
Perceptual learning improves perception through training. Perceptual learning improves with most stimulus types but fails when . certain stimulus types are mixed during training (roving). This result is surprising because classical supervised and unsupervised neural network models can cope easily with roving conditions. What makes humans so inferior compared to these models? As experimental and conceptual work has shown, human perceptual learning is neither supervised nor unsupervised but reward-based learning. Reward-based learning suffers from the so-called unsupervised bias, i.e., to prevent synaptic " drift" , the . average reward has to be exactly estimated. However, this is impossible when two or more stimulus types with different rewards are presented during training (and the reward is estimated by a running average). For this reason, we propose no learning occurs in roving conditions. However, roving hinders perceptual learning only for combinations of similar stimulus types but not for dissimilar ones. In this latter case, we propose that a critic can estimate the reward for each stimulus type separately. One implication of our analysis is that the critic cannot be located in the visual system. © 2011 Elsevier Ltd.
Resumo:
In many different spatial discrimination tasks, such as in determining the sign of the offset in a vernier stimulus, the human visual system exhibits hyperacuity-level performance by evaluating spatial relations with the precision of a fraction of a photoreceptor"s diameter. We propose that this impressive performance depends in part on a fast learning process that uses relatively few examples and occurs at an early processing stage in the visual pathway. We show that this hypothesis is plausible by demonstrating that it is possible to synthesize, from a small number of examples of a given task, a simple (HyperBF) network that attains the required performance level. We then verify with psychophysical experiments some of the key predictions of our conjecture. In particular, we show that fast timulus-specific learning indeed takes place in the human visual system and that this learning does not transfer between two slightly different hyperacuity tasks.
Resumo:
Studies of perceptual learning have focused on aspects of learning that are related to early stages of sensory processing. However, conclusions that perceptual learning results in low-level sensory plasticity are of great controversy, largely because such learning can often be attributed to plasticity in later stages of sensory processing or in the decision processes. To address this controversy, we developed a novel random dot motion (RDM) stimulus to target motion cells selective to contrast polarity, by ensuring the motion direction information arises only from signal dot onsets and not their offsets, and used these stimuli in conjunction with the paradigm of task-irrelevant perceptual learning (TIPL). In TIPL, learning is achieved in response to a stimulus by subliminally pairing that stimulus with the targets of an unrelated training task. In this manner, we are able to probe learning for an aspect of motion processing thought to be a function of directional V1 simple cells with a learning procedure that dissociates the learned stimulus from the decision processes relevant to the training task. Our results show learning for the exposed contrast polarity and that this learning does not transfer to the unexposed contrast polarity. These results suggest that TIPL for motion stimuli may occur at the stage of directional V1 simple cells.
Resumo:
In noise repetition-detection tasks, listeners have to distinguish trials of continuously running noise from trials in which noise tokens are repeated in a cyclic manner. Recently, it has been shown that using the exact same noise token across several trials (“reference noise”) facilitates the detection of repetitions for this token [Agus et al. (2010). Neuron 66, 610–618]. This was attributed to perceptual learning. Here, the nature of the learning was investigated. In experiment 1, reference noise tokens were embedded in trials with or without cyclic presentation. Naïve listeners reported repetitions in both cases, thus responding to the reference noise even in the absence of an actual repetition. Experiment 2, with the same listeners, showed a similar pattern of results even after the design of the experiment was made explicit, ruling out a misunderstanding of the task. Finally, in experiment 3, listeners reported repetitions in trials containing the reference noise, even before ever hearing it presented cyclically. The results show that listeners were able to learn and recognize noise tokens in the absence of an immediate repetition. Moreover, the learning mandatorily interfered with listeners' ability to detect repetitions. It is concluded that salient perceptual changes accompany the learning of noise.
Resumo:
Experience continuously imprints on the brain at all stages of life. The traces it leaves behind can produce perceptual learning [1], which drives adaptive behavior to previously encountered stimuli. Recently, it has been shown that even random noise, a type of sound devoid of acoustic structure, can trigger fast and robust perceptual learning after repeated exposure [2]. Here, by combining psychophysics, electroencephalography (EEG), and modeling, we show that the perceptual learning of noise is associated with evoked potentials, without any salient physical discontinuity or obvious acoustic landmark in the sound. Rather, the potentials appeared whenever a memory trace was observed behaviorally. Such memory-evoked potentials were characterized by early latencies and auditory topographies, consistent with a sensory origin. Furthermore, they were generated even on conditions of diverted attention. The EEG waveforms could be modeled as standard evoked responses to auditory events (N1-P2) [3], triggered by idiosyncratic perceptual features acquired through learning. Thus, we argue that the learning of noise is accompanied by the rapid formation of sharp neural selectivity to arbitrary and complex acoustic patterns, within sensory regions. Such a mechanism bridges the gap between the short-term and longer-term plasticity observed in the learning of noise [2, 4-6]. It could also be key to the processing of natural sounds within auditory cortices [7], suggesting that the neural code for sound source identification will be shaped by experience as well as by acoustics.
Resumo:
Les cortices sensoriels sont des régions cérébrales essentielles pour la perception. En particulier, le cortex visuel traite l’information visuelle en provenance de la rétine qui transite par le thalamus. Les neurones sont les unités fonctionnelles qui transforment l'information sensorielle en signaux électriques, la transfèrent vers le cortex et l'intègrent. Les neurones du cortex visuel sont spécialisés et analysent différents aspects des stimuli visuels. La force des connections entre les neurones peut être modulée par la persistance de l'activité pré-synaptique et induit une augmentation ou une diminution du signal post-synaptique à long terme. Ces modifications de la connectivité synaptique peuvent induire la réorganisation de la carte corticale, c’est à dire la représentation de ce stimulus et la puissance de son traitement cortical. Cette réorganisation est connue sous le nom de plasticité corticale. Elle est particulièrement active durant la période de développement, mais elle s’observe aussi chez l’adulte, par exemple durant l’apprentissage. Le neurotransmetteur acétylcholine (ACh) est impliqué dans de nombreuses fonctions cognitives telles que l’apprentissage ou l’attention et il est important pour la plasticité corticale. En particulier, les récepteurs nicotiniques et muscariniques du sous-type M1 et M2 sont les récepteurs cholinergiques impliqués dans l’induction de la plasticité corticale. L’objectif principal de la présente thèse est de déterminer les mécanismes de plasticité corticale induits par la stimulation du système cholinergique au niveau du télencéphale basal et de définir les effets sur l’amélioration de la perception sensorielle. Afin d’induire la plasticité corticale, j’ai jumelé des stimulations visuelles à des injections intracorticales d’agoniste cholinergique (carbachol) ou à une stimulation du télencéphale basal (neurones cholinergiques qui innervent le cortex visuel primaire). J'ai analysé les potentiels évoqués visuels (PEVs) dans le cortex visuel primaire des rats pendant 4 à 8 heures après le couplage. Afin de préciser l’action de l’ACh sur l’activité des PEVs dans V1, j’ai injecté individuellement l’antagoniste des récepteurs muscariniques, nicotiniques, α7 ou NMDA avant l’infusion de carbachol. La stimulation du système cholinergique jumelée avec une stimulation visuelle augmente l’amplitude des PEVs durant plus de 8h. Le blocage des récepteurs muscarinique, nicotinique et NMDA abolit complètement cette amélioration, tandis que l’inhibition des récepteurs α7 a induit une augmentation instantanée des PEVs. Ces résultats suggèrent que l'ACh facilite à long terme la réponse aux stimuli visuels et que cette facilitation implique les récepteurs nicotiniques, muscariniques et une interaction avec les récepteur NMDA dans le cortex visuel. Ces mécanismes sont semblables à la potentiation à long-terme, évènement physiologique lié à l’apprentissage. L’étape suivante était d’évaluer si l’effet de l’amplification cholinergique de l’entrée de l’information visuelle résultait non seulement en une modification de l’activité corticale mais aussi de la perception visuelle. J’ai donc mesuré l’amélioration de l’acuité visuelle de rats adultes éveillés exposés durant 10 minutes par jour pendant deux semaines à un stimulus visuel de type «réseau sinusoïdal» couplé à une stimulation électrique du télencéphale basal. L’acuité visuelle a été mesurée avant et après le couplage des stimulations visuelle et cholinergique à l’aide d’une tâche de discrimination visuelle. L’acuité visuelle du rat pour le stimulus d’entrainement a été augmentée après la période d’entrainement. L’augmentation de l’acuité visuelle n’a pas été observée lorsque la stimulation visuelle seule ou celle du télencéphale basal seul, ni lorsque les fibres cholinergiques ont été lésées avant la stimulation visuelle. Une augmentation à long terme de la réactivité corticale du cortex visuel primaire des neurones pyramidaux et des interneurones GABAergiques a été montrée par l’immunoréactivité au c-Fos. Ainsi, lorsque couplé à un entrainement visuel, le système cholinergique améliore les performances visuelles pour l’orientation et ce probablement par l’optimisation du processus d’attention et de plasticité corticale dans l’aire V1. Afin d’étudier les mécanismes pharmacologiques impliqués dans l’amélioration de la perception visuelle, j’ai comparé les PEVs avant et après le couplage de la stimulation visuelle/cholinergique en présence d’agonistes/antagonistes sélectifs. Les injections intracorticales des différents agents pharmacologiques pendant le couplage ont montré que les récepteurs nicotiniques et M1 muscariniques amplifient la réponse corticale tandis que les récepteurs M2 muscariniques inhibent les neurones GABAergiques induisant un effet excitateur. L’infusion d’antagoniste du GABA corrobore l’hypothèse que le système inhibiteur est essentiel pour induire la plasticité corticale. Ces résultats démontrent que l’entrainement visuel jumelé avec la stimulation cholinergique améliore la plasticité corticale et qu’elle est contrôlée par les récepteurs nicotinique et muscariniques M1 et M2. Mes résultats suggèrent que le système cholinergique est un système neuromodulateur qui peut améliorer la perception sensorielle lors d’un apprentissage perceptuel. Les mécanismes d’amélioration perceptuelle induits par l’acétylcholine sont liés aux processus d’attention, de potentialisation à long-terme et de modulation de la balance d’influx excitateur/inhibiteur. En particulier, le couplage de l’activité cholinergique avec une stimulation visuelle augmente le ratio de signal / bruit et ainsi la détection de cibles. L’augmentation de la concentration cholinergique corticale potentialise l’afférence thalamocorticale, ce qui facilite le traitement d’un nouveau stimulus et diminue la signalisation cortico-corticale minimisant ainsi la modulation latérale. Ceci est contrôlé par différents sous-types de récepteurs cholinergiques situés sur les neurones GABAergiques ou glutamatergiques des différentes couches corticales. La présente thèse montre qu’une stimulation électrique dans le télencéphale basal a un effet similaire à l’infusion d’agoniste cholinergique et qu’un couplage de stimulations visuelle et cholinergique induit la plasticité corticale. Ce jumelage répété de stimulations visuelle/cholinergique augmente la capacité de discrimination visuelle et améliore la perception. Cette amélioration est corrélée à une amplification de l’activité neuronale démontrée par immunocytochimie du c-Fos. L’immunocytochimie montre aussi une différence entre l’activité des neurones glutamatergiques et GABAergiques dans les différentes couches corticales. L’injection pharmacologique pendant la stimulation visuelle/cholinergique suggère que les récepteurs nicotiniques, muscariniques M1 peuvent amplifier la réponse excitatrice tandis que les récepteurs M2 contrôlent l’activation GABAergique. Ainsi, le système cholinergique activé au cours du processus visuel induit des mécanismes de plasticité corticale et peut ainsi améliorer la capacité perceptive. De meilleures connaissances sur ces actions ouvrent la possibilité d’accélérer la restauration des fonctions visuelles lors d’un déficit ou d’amplifier la fonction cognitive.
Resumo:
The primary visual cortex (V1) is pre-wired to facilitate the extraction of behaviorally important visual features. Collinear edge detectors in V1, for instance, mutually enhance each other to improve the perception of lines against a noisy background. The same pre-wiring that facilitates line extraction, however, is detrimental when subjects have to discriminate the brightness of different line segments. How is it possible to improve in one task by unsupervised practicing, without getting worse in the other task? The classical view of perceptual learning is that practicing modulates the feedforward input stream through synaptic modifications onto or within V1. However, any rewiring of V1 would deteriorate other perceptual abilities different from the trained one. We propose a general neuronal model showing that perceptual learning can modulate top-down input to V1 in a task-specific way while feedforward and lateral pathways remain intact. Consistent with biological data, the model explains how context-dependent brightness discrimination is improved by a top-down recruitment of recurrent inhibition and a top-down induced increase of the neuronal gain within V1. Both the top-down modulation of inhibition and of neuronal gain are suggested to be universal features of cortical microcircuits which enable perceptual learning.
Resumo:
Perceptual learning is a training induced improvement in performance. Mechanisms underlying the perceptual learning of depth discrimination in dynamic random dot stereograms were examined by assessing stereothresholds as a function of decorrelation. The inflection point of the decorrelation function was defined as the level of decorrelation corresponding to 1.4 times the threshold when decorrelation is 0%. In general, stereothresholds increased with increasing decorrelation. Following training, stereothresholds and standard errors of measurement decreased systematically for all tested decorrelation values. Post training decorrelation functions were reduced by a multiplicative constant (approximately 5), exhibiting changes in stereothresholds without changes in the inflection points. Disparity energy model simulations indicate that a post-training reduction in neuronal noise can sufficiently account for the perceptual learning effects. In two subjects, learning effects were retained over a period of six months, which may have application for training stereo deficient subjects.
Resumo:
Perceptual learning can occur when stimuli are only imagined, i.e., without proper stimulus presentation. For example, perceptual learning improved bisection discrimination when only the two outer lines of the bisection stimulus were presented and the central line had to be imagined. Performance improved also with other static stimuli. In non-learning imagery experiments, imagining static stimuli is different from imagining motion stimuli. We hypothesized that those differences also affect imagery perceptual learning. Here, we show that imagery training also improves motion direction discrimination. Learning occurs when no stimulus at all is presented during training, whereas no learning occurs when only noise is presented. The interference between noise and mental imagery possibly hinders learning. For static bisection stimuli, the pattern is just the opposite. Learning occurs when presented with the two outer lines of the bisection stimulus, i.e., with only a part of the visual stimulus, while no learning occurs when no stimulus at all is presented.
Resumo:
When human subjects discriminate motion directions of two visual stimuli, their discrimination improves with practice. This improved performance has been found to be specific to the practiced directions and does not transfer to new motion directions. Indeed, such stimulus-specific learning has become a trademark finding in almost all perceptual learning studies and has been used to infer the loci of learning in the brain. For example, learning in motion discrimination has been inferred to occur in the visual area MT (medial temporal cortex) of primates, where neurons are selectively tuned to motion directions. However, such motion discrimination task is extremely difficult, as is typical of most perceptual learning tasks. When the difficulty is moderately reduced, learning transfers to new motion directions. This result challenges the idea of using simple visual stimuli to infer the locus of learning in low-level visual processes and suggests that higher-level processing is essential even in “simple” perceptual learning tasks.
Resumo:
To investigate the nature of plasticity in the adult visual system, perceptual learning was measured in a peripheral orientation discrimination task with systematically varying amounts of external (environmental) noise. The signal contrasts required to achieve threshold were reduced by a factor or two or more after training at all levels of external noise. The strong quantitative regularities revealed by this novel paradigm ruled out changes in multiplicative internal noise, changes in transducer nonlinearites, and simple attentional tradeoffs. Instead, the regularities specify the mechanisms of perceptual learning at the behavioral level as a combination of external noise exclusion and stimulus enhancement via additive internal noise reduction. The findings also constrain the neural architecture of perceptual learning. Plasticity in the weights between basic visual channels and decision is sufficient to account for perceptual learning without requiring the retuning of visual mechanisms.
Resumo:
The specificity of the improvement in perceptual learning is often used to localize the neuronal changes underlying this type of adult plasticity. We investigated a visual texture discrimination task previously reported to be accomplished preattentively and for which learning-related changes were inferred to occur at a very early level of the visual processing stream. The stimulus was a matrix of lines from which a target popped out, due to an orientation difference between the three target lines and the background lines. The task was to report the global orientation of the target and was performed monocularly. The subjects' performance improved dramatically with training over the course of 2-3 weeks, after which we tested the specificity of the improvement for the eye trained. In all subjects tested, there was complete interocular transfer of the learning effect. The neuronal correlate of this learning are therefore most likely localized in a visual area where input from the two eyes has come together.