937 resultados para Percentile speed
Resumo:
Vehicle detectors have been installed at approximately every 300 meters on each lane on Tokyo metropolitan expressway. Various traffic data such as traffic volume, average speed and time occupancy are collected by vehicle detectors. We can understand traffic characteristics of every point by comparing traffic data collected at consecutive points. In this study, we focused on average speed, analyzed road potential by operating speed during free-flow conditions, and identified latent bottlenecks. Furthermore, we analyzed effects for road potential by the rainfall level and day of the week. It’s expected that this method of analysis will be utilized for installation of ITS such as drive assist, estimation of parameters for traffic simulation and feedback to road design as congestion measures.
Resumo:
The thesis aims to elaborate on the optimum trigger speed for Vehicle Activated Signs (VAS) and to study the effectiveness of VAS trigger speed on drivers’ behaviour. Vehicle activated signs (VAS) are speed warning signs that are activated by individual vehicle when the driver exceeds a speed threshold. The threshold, which triggers the VAS, is commonly based on a driver speed, and accordingly, is called a trigger speed. At present, the trigger speed activating the VAS is usually set to a constant value and does not consider the fact that an optimal trigger speed might exist. The optimal trigger speed significantly impacts driver behaviour. In order to be able to fulfil the aims of this thesis, systematic vehicle speed data were collected from field experiments that utilized Doppler radar. Further calibration methods for the radar used in the experiment have been developed and evaluated to provide accurate data for the experiment. The calibration method was bidirectional; consisting of data cleaning and data reconstruction. The data cleaning calibration had a superior performance than the calibration based on the reconstructed data. To study the effectiveness of trigger speed on driver behaviour, the collected data were analysed by both descriptive and inferential statistics. Both descriptive and inferential statistics showed that the change in trigger speed had an effect on vehicle mean speed and on vehicle standard deviation of the mean speed. When the trigger speed was set near the speed limit, the standard deviation was high. Therefore, the choice of trigger speed cannot be based solely on the speed limit at the proposed VAS location. The optimal trigger speeds for VAS were not considered in previous studies. As well, the relationship between the trigger value and its consequences under different conditions were not clearly stated. The finding from this thesis is that the optimal trigger speed should be primarily based on lowering the standard deviation rather than lowering the mean speed of vehicles. Furthermore, the optimal trigger speed should be set near the 85th percentile speed, with the goal of lowering the standard deviation.
Resumo:
Vehicle activated signs (VAS) display a warning message when drivers exceed a particular threshold. VAS are often installed on local roads to display a warning message depending on the speed of the approaching vehicles. VAS are usually powered by electricity; however, battery and solar powered VAS are also commonplace. This thesis investigated devel-opment of an automatic trigger speed of vehicle activated signs in order to influence driver behaviour, the effect of which has been measured in terms of reduced mean speed and low standard deviation. A comprehen-sive understanding of the effectiveness of the trigger speed of the VAS on driver behaviour was established by systematically collecting data. Specif-ically, data on time of day, speed, length and direction of the vehicle have been collected for the purpose, using Doppler radar installed at the road. A data driven calibration method for the radar used in the experiment has also been developed and evaluated. Results indicate that trigger speed of the VAS had variable effect on driv-ers’ speed at different sites and at different times of the day. It is evident that the optimal trigger speed should be set near the 85th percentile speed, to be able to lower the standard deviation. In the case of battery and solar powered VAS, trigger speeds between the 50th and 85th per-centile offered the best compromise between safety and power consump-tion. Results also indicate that different classes of vehicles report differ-ences in mean speed and standard deviation; on a highway, the mean speed of cars differs slightly from the mean speed of trucks, whereas a significant difference was observed between the classes of vehicles on lo-cal roads. A differential trigger speed was therefore investigated for the sake of completion. A data driven approach using Random forest was found to be appropriate in predicting trigger speeds respective to types of vehicles and traffic conditions. The fact that the predicted trigger speed was found to be consistently around the 85th percentile speed justifies the choice of the automatic model.
Resumo:
Average speed enforcement is a relatively new approach gaining popularity throughout Europe and Australia. This paper reviews the evidence regarding the impact of this approach on vehicle speeds, crashes rates and a number of additional road safety and public health outcomes. The economic and practical viability of the approach as a road safety countermeasure is also explored. A literature review, with an international scope, of both published and grey literature was conducted. There is a growing body of evidence to suggest a number of road safety benefits associated with average speed enforcement, including high rates of compliance with speed limits, reductions in average and 85th percentile speeds and reduced speed variability between vehicles. Moreover, the approach has been demonstrated to be particularly effective in reducing excessive speeding behaviour. Reductions in crash rates have also been reported in association with average speed enforcement, particularly in relation to fatal and serious injury crashes. In addition, the approach has been shown to improve traffic flow, reduce vehicle emissions and has also been associated with high levels of public acceptance. Average speed enforcement offers a greater network-wide approach to managing speeds that reduces the impact of time and distance halo effects associated with other automated speed enforcement approaches. Although comparatively expensive it represents a highly reliable approach to speed enforcement that produces considerable returns on investment through reduced social and economic costs associated with crashes.
Resumo:
Roadside safety barriers designs are tested with passenger cars in Europe using standard EN1317 in which the impact angle for normal, high and very high containment level tests is 20°. In comparison to EN1317, the US standard MASH has higher impact angles for cars and pickups (25°) and different vehicle masses. Studies in Europe (RISER) and the US have shown values for the 90th percentile impact angle of 30°–34°. Thus, the limited evidence available suggests that the 20° angle applied in EN 1317 may be too low.
The first goal of this paper is to use the US NCHRP database (Project NCHRP 17–22) to assess the distribution of impact angle and collision speed in recent ROR accidents. Second, based on the findings of the statistical analysis and on analysis of impact angles and speeds in the literature, an LS-DYNA finite element analysis was carried out to evaluate the normal containment level of concrete barriers in non-standard collisions. The FE model was validated against a crash test of a portable concrete barrier carried out at the UK Transport Research Laboratory (TRL).
The accident data analysis for run-off road accidents indicates that a substantial proportion of accidents have an impact angle in excess of 20°. The baseline LS-DYNA model showed good comparison with experimental acceleration severity index (ASI) data and the parametric analysis indicates a very significant influence of impact angle on ASI. Accordingly, a review of European run-off road accidents and the configuration of EN 1317 should be performed.
Resumo:
Using only legal sanctions to manage the speed at which people drive ignores the potential benefits of harnessing social factors such as the influence of others. Social influences on driver speeds were explored in this qualitative examination of 67 Australian drivers. Focus group interviews with 8 driver types (young, mid-age and older males and females, and self-identified Excessive and Rare speeders) were guided by Akers’ social learning theory (Akers, 1998). Findings revealed two types of influential others: people known to the driver (passengers and parents), and unknown other drivers. Passengers were generally described as having a slowing influence on drivers: responsibility for the safety of people in the car and consideration for passenger comfort were key themes. In contrast, all but the Rare speeders reported increasing their speed when driving alone. Parental role modelling was also described. In relation to other drivers, key themes included speeding to keep up with traffic flow and perceived pressure to drive faster. This ‘pressure’ from others to ‘speed up’ was expressed in all groups and reported strategies for managing this varied. Encouragingly, examples of actual or anticipated social rewards for speeding were less common than examples of social punishments. Three main themes relating to social punishments were embarrassment, breaching the trust of others, and presenting an image of a responsible driver. Impression management and self-presentation are discussed in light of these findings. Overall, our findings indicate scope to exploit the use of social sanctions for speeding and social praise for speed limit compliance to enhance speed management strategies.
Resumo:
Research has highlighted the relationship between vehicle speed and increased crash risk and severity. Evidence suggests that police speed enforcement, in particular speed camera operations, can be an effective tool for reducing traffic crashes. A quantitative survey of Queensland drivers (n = 852) was conducted to investigate the impact of police speed enforcement methods on self-reported speeding behaviour. Results indicate that visible enforcement was associated with significantly greater self-reported compliance than covert operations irrespective of the mobility of the approach, and the effects on behaviour were longer lasting. The mobility of operations appeared to be moderated the visibility of the approach. Specifically, increased mobility was associated with increase reported compliant behaviour, but only for covert operations, and increased longevity of reported compliant behaviour, but only for overt operations. The perceived effectiveness of various speed enforcement approaches are also analysed across a range of driving scenarios. Results are discussed in light of the small effect sizes. Recommendations for policy and future research are presented.
Resumo:
Review of 'The Kursk', La Boite Theatre Company, published in The Australian, 3 September 2009.
Resumo:
The term self-selected (i.e., individual or comfortable walking pace or speed) is commonly used in the literature (Frost, Dowling, Bar-Or, & Dyson, 1997; Jeng, Liao, Lai, & Hou, 1997; Wergel-Kolmert & Wohlfart, 1999; Maltais, Bar-Or, Pienynowski, & Galea, 2003; Browning & Kram, 2005; Browning, Baker, Herron, & Kram, 2006; Hills, Byrne, Wearing, & Armstrong, 2006) and is identified as the most efficient walking speed, with increased efficiency defined by lower oxygen uptake (VO^sub 2^) per unit mechanical work (Hoyt & Taylor, 1981; Taylor, Heglund, & Maloiy, 1982; Hreljac, 1993). [...] assessing individual and group differences in metabolic energy expenditure using oxygen uptake requires individuals to be comfortable with, and able to accommodate to, the equipment.