893 resultados para Percentage of Fat Mass
Resumo:
An early and accurate recognition of success in treating obesity may increase the compliance of obese children and their families to intervention programs. This observational, prospective study aimed to evaluate the ability and the time to detect a significant reduction of adiposity estimated by body mass index (BMI), percentage of fat mass (%FM), and fat mass index (FMI) during weight management in prepubertal obese children.
Resumo:
Several studies have reported high levels of inflammatory biomarkers in hypertension, but data coming from the general population are sparse, and sex differences have been little explored. The CoLaus Study is a cross-sectional examination survey in a random sample of 6067 Caucasians aged 35-75 years in Lausanne, Switzerland. Blood pressure (BP) was assessed using a validated oscillometric device. Anthropometric parameters were also measured, including body composition, using electrical bioimpedance. Crude serum levels of interleukin-6 (IL-6), tumor necrosis factor α (TNF-α) and ultrasensitive C-reactive protein (hsCRP) were positively and IL-1β (IL-1β) negatively (P<0.001 for all values), associated with BP. For IL-6, IL-1β and TNF-α, the association disappeared in multivariable analysis, largely explained by differences in age and body mass index, in particular fat mass. On the contrary, hsCRP remained independently and positively associated with systolic (β (95% confidence interval): 1.15 (0.64; 1.65); P<0.001) and diastolic (0.75 (0.42; 1.08); P<0.001) BP. Relationships of hsCRP, IL-6 and TNF-α with BP tended to be stronger in women than in men, partly related to the difference in fat mass, yet the interaction between sex and IL-6 persisted after correction for all tested confounders. In the general population, the associations between inflammatory biomarkers and rising levels of BP are mainly driven by age and fat mass. The stronger associations in women suggest that sex differences might exist in the complex interplay between BP and inflammation.
Resumo:
BACKGROUND: The influence of adiposity on upper-limb bone strength has rarely been studied in children, despite the high incidence of forearm fractures in this population. OBJECTIVE: The objective was to compare the influence of muscle and fat tissues on bone strength between the upper and lower limbs in prepubertal children. DESIGN: Bone mineral content, total bone cross-sectional area, cortical bone area (CoA), cortical thickness (CoTh) at the radius and tibia (4% and 66%, respectively), trabecular density (TrD), bone strength index (4% sites), cortical density (CoD), stress-strain index, and muscle and fat areas (66% sites) were measured by using peripheral quantitative computed tomography in 427 children (206 boys) aged 7-10 y. RESULTS: Overweight children (n = 93) had greater values for bone variables (0.3-1.3 SD; P < 0.0001) than did their normal-weight peers, except for CoD 66% and CoTh 4%. The between-group differences were 21-87% greater at the tibia than at the radius. After adjustment for muscle cross-sectional area, TrD 4%, bone mineral content, CoA, and CoTh 66% at the tibia remained greater in overweight children, whereas at the distal radius total bone cross-sectional area and CoTh were smaller in overweight children (P < 0.05). Overweight children had a greater fat-muscle ratio than did normal-weight children, particularly in the forearm (92 +/- 28% compared with 57 +/- 17%). Fat-muscle ratio correlated negatively with all bone variables, except for TrD and CoD, after adjustment for body weight (r = -0.17 to -0.54; P < 0.0001). CONCLUSIONS: Overweight children had stronger bones than did their normal-weight peers, largely because of greater muscle size. However, the overweight children had a high proportion of fat relative to muscle in the forearm, which is associated with reduced bone strength.
Resumo:
The aim of this study was to analyze vitamin D levels and their association with bone mineral density and body composition in primary antiphospholipid syndrome. For this cross-sectional study 23 premenopausal women with primary antiphospholipid syndrome (Sapporo criteria) and 23 age- and race-matched healthy controls were enrolled. Demographic, anthropometric, clinical and laboratorial data were collected using clinical interview and chart review. Serum 25-hydroxyvitamin D levels, parathormone, calcium and 24-hour urinary calcium were evaluated in all subjects. Bone mineral density and body composition were studied by dual X-ray absorptiometry. The mean age of patients and controls was 33 years. Weight (75.61 [20.73] vs. 63.14 [7.34] kg, p=0.009), body mass index (29.57 [7.17] vs. 25.35 [3.37] kg, p=0.014) and caloric ingestion (2493 [1005.6] vs. 1990 [384.1] kcal/day, p=0.03) were higher in PAPS than controls. All PAPS were under oral anticoagulant with INR within therapeutic range. Interestingly, biochemical bone parameters revealed lower levels of 25-hydroxyvitamin D [21.64 (11.26) vs. 28.59 (10.67) mg/dl, p=0.039], serum calcium [9.04 (0.46) vs. 9.3 (0.46) mg/dl, p=0.013] and 24-hour urinary calcium [106.55 (83.71) vs. 172.92 (119.05) mg/d, p=0.027] in patients than in controls. Supporting these findings, parathormone levels were higher in primary antiphospholipid syndrome than in controls [64.82 (37.83) vs. 44.53 (19.62) pg/ml, p=0.028]. The analysis of osteoporosis risk factors revealed that the two groups were comparable (p>0.05). Lumbar spine, femoral neck, total femur and whole body bone mineral density were similar in both groups (p>0.05). Higher fat mass [28.51 (12.93) vs. 20.01 (4.68) kg, p=0.005] and higher percentage of fat [36.08 (7.37) vs. 31.23 (4.64)%, p=0.010] were observed in PAPS in comparison with controls; although no difference was seen regarding lean mass. In summary, low vitamin D in primary antiphospholipid syndrome could be secondary to higher weight and fat mass herein observed most likely due to adipocyte sequestration. This weight gain may also justify the maintenance of bone mineral density even with altered biochemical bone parameters. Lupus (2010) 19, 1302-1306.
Resumo:
Background: Body composition is affected by diseases, and affects responses to medical treatments, dosage of medicines, etc., while an abnormal body composition contributes to the causation of many chronic diseases. While we have reliable biochemical tests for certain nutritional parameters of body composition, such as iron or iodine status, and we have harnessed nuclear physics to estimate the body’s content of trace elements, the very basic quantification of body fat content and muscle mass remains highly problematic. Both body fat and muscle mass are vitally important, as they have opposing influences on chronic disease, but they have seldom been estimated as part of population health surveillance. Instead, most national surveys have merely reported BMI and waist, or sometimes the waist/hip ratio; these indices are convenient but do not have any specific biological meaning. Anthropometry offers a practical and inexpensive method for muscle and fat estimation in clinical and epidemiological settings; however, its use is imperfect due to many limitations, such as a shortage of reference data, misuse of terminology, unclear assumptions, and the absence of properly validated anthropometric equations. To date, anthropometric methods are not sensitive enough to detect muscle and fat loss. Aims: The aim of this thesis is to estimate Adipose/fat and muscle mass in health disease and during weight loss through; 1. evaluating and critiquing the literature, to identify the best-published prediction equations for adipose/fat and muscle mass estimation; 2. to derive and validate adipose tissue and muscle mass prediction equations; and 3.to evaluate the prediction equations along with anthropometric indices and the best equations retrieved from the literature in health, metabolic illness and during weight loss. Methods: a Systematic review using Cochrane Review method was used for reviewing muscle mass estimation papers that used MRI as the reference method. Fat mass estimation papers were critically reviewed. Mixed ethnic, age and body mass data that underwent whole body magnetic resonance imaging to quantify adipose tissue and muscle mass (dependent variable) and anthropometry (independent variable) were used in the derivation/validation analysis. Multiple regression and Bland-Altman plot were applied to evaluate the prediction equations. To determine how well the equations identify metabolic illness, English and Scottish health surveys were studied. Statistical analysis using multiple regression and binary logistic regression were applied to assess model fit and associations. Also, populations were divided into quintiles and relative risk was analysed. Finally, the prediction equations were evaluated by applying them to a pilot study of 10 subjects who underwent whole-body MRI, anthropometric measurements and muscle strength before and after weight loss to determine how well the equations identify adipose/fat mass and muscle mass change. Results: The estimation of fat mass has serious problems. Despite advances in technology and science, prediction equations for the estimation of fat mass depend on limited historical reference data and remain dependent upon assumptions that have not yet been properly validated for different population groups. Muscle mass does not have the same conceptual problems; however, its measurement is still problematic and reference data are scarce. The derivation and validation analysis in this thesis was satisfactory, compared to prediction equations in the literature they were similar or even better. Applying the prediction equations in metabolic illness and during weight loss presented an understanding on how well the equations identify metabolic illness showing significant associations with diabetes, hypertension, HbA1c and blood pressure. And moderate to high correlations with MRI-measured adipose tissue and muscle mass before and after weight loss. Conclusion: Adipose tissue mass and to an extent muscle mass can now be estimated for many purposes as population or groups means. However, these equations must not be used for assessing fatness and categorising individuals. Further exploration in different populations and health surveys would be valuable.
Resumo:
Objective - The adjusted effect of long-chain polyunsaturated fatty acid (LCPUFA) intake during pregnancy on adiposity at birth of healthy full-term appropriate-for-gestational age neonates was evaluated. Study Design - In a cross-sectional convenience sample of 100 mother and infant dyads, LCPUFA intake during pregnancy was assessed by food frequency questionnaire with nutrient intake calculated using Food Processor Plus. Linear regression models for neonatal body composition measurements, assessed by air displacement plethysmography and anthropometry, were adjusted for maternal LCPUFA intakes, energy and macronutrient intakes, prepregnancy body mass index and gestational weight gain. Result - Positive associations between maternal docosahexaenoic acid intake and ponderal index in male offspring (β=0.165; 95% confidence interval (CI): 0.031–0.299; P=0.017), and between n-6:n-3 LCPUFA ratio intake and fat mass (β=0.021; 95% CI: 0.002–0.041; P=0.034) and percentage of fat mass (β=0.636; 95% CI: 0.125–1.147; P=0.016) in female offspring were found. Conclusion - Using a reliable validated method to assess body composition, adjusted positive associations between maternal docosahexaenoic acid intake and birth size in male offspring and between n-6:n-3 LCPUFA ratio intake and adiposity in female offspring were found, suggesting that maternal LCPUFA intake strongly influences fetal body composition.
Resumo:
OBJECTIVE: The adjusted effect of long-chain polyunsaturated fatty acid (LCPUFA) intake during pregnancy on adiposity at birth of healthy full-term appropriate-for-gestational age neonates was evaluated. STUDY DESIGN: In a cross-sectional convenience sample of 100 mother and infant dyads, LCPUFA intake during pregnancy was assessed by food frequency questionnaire with nutrient intake calculated using Food Processor Plus. Linear regression models for neonatal body composition measurements, assessed by air displacement plethysmography and anthropometry, were adjusted for maternal LCPUFA intakes, energy and macronutrient intakes, prepregnancy body mass index and gestational weight gain. RESULT: Positive associations between maternal docosahexaenoic acid intake and ponderal index in male offspring (β=0.165; 95% confidence interval (CI): 0.031-0.299; P=0.017), and between n-6:n-3 LCPUFA ratio intake and fat mass (β=0.021; 95% CI: 0.002-0.041; P=0.034) and percentage of fat mass (β=0.636; 95% CI: 0.125-1.147; P=0.016) in female offspring were found. CONCLUSION: Using a reliable validated method to assess body composition, adjusted positive associations between maternal docosahexaenoic acid intake and birth size in male offspring and between n-6:n-3 LCPUFA ratio intake and adiposity in female offspring were found, suggesting that maternal LCPUFA intake strongly influences fetal body composition.
Resumo:
The measurement of fat balance (fat input minus fat output) involves the accurate estimation of both metabolizable fat intake and total fat oxidation. This is possible mostly under laboratory conditions and not yet in free-living conditions. In the latter situation, net fat retention/mobilization can be estimated based on precise and accurate sequential body composition measurements. In case of positive balance, lipids stored in adipose tissue can originate from dietary (exogenous) lipids or from nonlipid precursors, mainly from carbohydrates (CHOs) but also from ethanol, through a process known as de novo lipogenesis (DNL). Basic equations are provided in this review to facilitate the interpretation of the different subcomponents of fat balance (endogenous vs exogenous) under different nutritional circumstances. One difficulty is methodological: total DNL is difficult to measure quantitatively in man; for example, indirect calorimetry only tracks net DNL, not total DNL. Although the numerous factors (mostly exogenous) influencing DNL have been studied, in particular the effect of CHO overfeeding, there is little information on the rate of DNL in habitual conditions of life, that is, large day-to-day fluctuations of CHO intakes, different types of CHO ingested with different glycemic indexes, alcohol combined with excess CHO intakes, etc. Three issues, which are still controversial today, will be addressed: (1) Is the increase of fat mass induced by CHO overfeeding explained by DNL only, or by decreased endogenous fat oxidation, or both? (2) Is DNL different in overweight and obese individuals as compared to their lean counterparts? (3) Does DNL occur both in the liver and in adipose tissue? Recent studies have demonstrated that acute CHO overfeeding influences adipose tissue lipogenic gene expression and that CHO may stimulate DNL in skeletal muscles, at least in vitro. The role of DNL and its importance in health and disease remain to be further clarified, in particular the putative effect of DNL on the control of energy intake and energy expenditure, as well as the occurrence of DNL in other tissues (such as in myocytes) in addition to hepatocytes and adipocytes.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Abdominal adiposity has been linked to metabolic abnormalities, including dyslipidemia, oxidative stress, and low-grade inflammation. To test the hypothesis that consumption of 100% orange juice (OJ) would improve metabolic, oxidative, and inflammatory biomarkers and cytokine levels in normal and overweight subjects with increased waist circumference. Subjects were divided into two groups in accordance with their body mass index: normal and overweight. Both groups of individuals consumed 750 mL of OJ daily for 8 weeks. Body composition (weight, height, percentage of fat mass, and waist circumference); metabolic biomarkers (total cholesterol, low-density lipoprotein-cholesterol [LDL-C], high-density lipoprotein-cholesterol [HDL-C], triglycerides, glucose, insulin, HOMA-IR, and glycated hemoglobin); oxidative biomarkers (malondialdehyde and DPPH(•)); inflammatory biomarkers (high-sensitivity C-reactive protein [hsCRP]); cytokines (IL-4, IL-10, IL-12, TNF-α, and IFN-γ); and diet were evaluated before and after consumption of OJ for 8 weeks. The major findings of this study were: 1) no alteration in body composition in either group; 2) improvement of the lipid profile, evidenced by a reduction in total cholesterol and LDL-C; 3) a potential stimulation of the immune response due to increase in IL-12; 4) anti-inflammatory effect as a result of a marked reduction in hsCRP; and 5) antioxidant action by the enhancement of total antioxidant capacity and the reduction of lipid peroxidation, in both normal and overweight subjects. OJ consumption has a positive effect on important biomarkers of health status in normal and overweight subjects, thereby supporting evidence that OJ acts as functional food and could be consumed as part of a healthy diet to prevent metabolic and chronic diseases.
Resumo:
The aim of this study was to verify the effects of aerobic and combined training on the body composition and lipid profile of obese postmenopausal women and to analyze which of these models is more effective after equalizing the training load. Sixty five postmenopausal women (age=61.0±6.3 years) were divided into three groups: Aerobic Training (AT,n= 15), Combined Training (CT,[strength+aerobic],n=32) and control group (CG,n=18). Their body composition: upper body fat (TF), fat mass (FM), percentage of fat mass and fat free mass (FFM) were estimated by DXA. The lipid profile, total cholesterol, HDL-cholesterol and LDL-cholesterol were assessed. There was a statistically significant difference in the TF (AT= -4.4 %, CT= -4.4%, and CG= 1.0%, p= 0.001) and FFM (AT= 1.7%, CT= 2.6%, and CG= -1.4%, p= 0.0001) between the experimental and the control groups. Regarding the percentage of body fat, there was a statistically significant difference only between the CT and CG groups (AT= -2.8%, CT= -3.9% and CG= 0.31%, p= 0.004). When training loads were equalized, the aerobic and combined training decreased core fat and increased fat-free mass, but only the combined training potentiated a reduction in percentage of body fat in obese postmenopausal women after the training program. HDL-c levels increased in the combined group and the chol/HDL ratio (atherogenic index) decreased in the aerobic group, however, there were no significant differences between the intervention programs. Taken together, both the exercise training programs were effective for improving body composition and inducing an anti-atherogenic status.
Resumo:
RESUMO:Contexto: A avaliação do estado de nutrição do doente com indicação para transplante hepático (TH) deve ser abrangente, considerando o amplo espetro de situações clínicas e metabólicas. As alterações metabólicas relacionadas com a doença hepática podem limitar a aplicação de métodos de avaliação nutricional, subestimando a desnutrição. Após o TH, é expectável a reversão dos distúrbios metabólicos da doença hepática, pela melhoria da função do fígado. No entanto, algumas complicações metabólicas podem surgir após o TH, relacionadas com a má-nutrição, a desnervação hepática e o uso prolongado de imunossupressão, comprometendo os resultados clínicos a longo-prazo. A medição longitudinal e confiável do metabolismo energético e dos compartimentos corporais após o TH, avaliada em conjunto com fatores influentes no estado de nutrição, pode identificar precocemente situações de risco e otimizar e individualizar estratégias clínicas e nutricionais com vantagens no prognóstico. Objetivo: Avaliar longitudinalmente, a curto prazo, o estado de nutrição após o TH em doentes com insuficiência hepática por doença crónica e identificar os fatores, para além da cirurgia, que determinam diferentes evoluções do metabolismo energético e da composição corporal. Métodos: Foi estudada uma coorte de indivíduos com indicação para TH por doença hepática crónica, admitidos consecutivamente para TH ortotópico eletivo, durante 2 anos. Foram programados 3 momentos de avaliação: na última consulta pré-TH (T0), logo que adquirida autonomia respiratória e funcional após o TH (T1) e um mês após o TH (T2). Nesses momentos, foram medidos no mesmo dia: o suprimento nutricional por recordatório das últimas 24 horas, o estado de nutrição por Avaliação Subjetiva Global (ASG), o gasto energético em repouso (GER) por calorimetria indireta, a antropometria, a composição corporal por bioimpedância elétrica tetrapolar multifrequências e a força muscular por dinamometria de preensão palmar. O índice de massa magra (IMM) e a massa celular corporal (MCC) foram usados como indicadores do músculo esquelético e a percentagem de massa gorda (%MG) e o índice de massa gorda (IMG) como indicadores de adiposidade. O GER foi comparado com o estimado pelas fórmulas de Harris-Benedict para classificação do estado metabólico em:hipermetabolismo (GER medido >120% do GER estimado), normometabolismo (GER medido entre 80 e 120% do GER estimado) e hipometabolismo (GER medido <80% do GER estimado). Foi utilizada análise multivariável: por regressão logística, para identificar variáveis associadas à possibilidade (odds ratio – OR) de pertencer a cada grupo metabólico pré-TH; por regressão linear múltipla, para identificar variáveis associadas à variação dos compartimentos corporais no período pós-TH; e por modelos de efeitos mistos generalizados, para identificar variáveis associadas à evolução do GER e dos compartimentos corporais entre o período pré- e pós-TH. Resultados: Foram incluídos 56 indivíduos com idade, média (DP), 53,7 (8,5) anos, 87,5% do sexo masculino, 23,2% com doença hepática crónica de etiologia etanólica. Após o TH, em 60,7% indivíduos foi administrado regime imunossupressor baseado no tacrolimus. Os indivíduos foram avaliados [mediana (AIQ)] 90,5 (P25: 44,2; P75: 134,5) dias antes do TH (T0), 9,0 (P25: 7,0; P75: 12,0) dias após o TH (T1) e 36,0 (P25: 31,0; P75: 43,0) dias após o TH (T2). Após o TH houve melhoria significativa do estado de nutrição, com diminuição da prevalência de desnutrição classificada pela ASG (37,5% em T0, 16,1% em T2, p<0,001). Antes do TH, 41,1% dos indivíduos eram normometabólicos, 37,5% hipometabólicos e 21,4% hipermetabólicos. A possibilidade de pertencer a cada grupo metabólico pré-TH associou-se à: idade (OR=0,899, p=0,010) e desnutrição pela ASG (OR=5,038, p=0,015) para o grupo normometabólico; e índice de massa magra (IMM, OR=1,264, p=0,049) e etiologia viral da doença hepática (OR=8,297, p=0,019) para o grupo hipermetabólico. Não se obteve modelo múltiplo para o grupo de hipometabólico pré-TH, mas foram identificadas associações univariáveis com a história de toxicodependência (OR=0,282, p=0,047) e com a sarcopénia pré- TH (OR=8,000, p=0,040). Após o TH, houve normalização significativa e progressiva do estado metabólico, indicada pelo aumento da prevalência de normometabolismo (41,1% em T0, 57,1% em T2, p=0,040). Foram identificados diferentes perfis de evolução do GER após o TH, estratificado pelo estado metabólico pré-TH: no grupo hipometabólico pré-TH, o GER (Kcal) aumentou significativa e progressivamente (1030,6 em T0; 1436,1 em T1, p=0,001; 1659,2 em T2, p<0,001); no grupo hipermetabólico pré-TH o GER diminuiu significativa e progressivamente (2097,1 em T0; 1662,5 em T1, p=0,024; 1493,0 em T2, p<0.001); no grupo normometabólico não houve variações significativas. Os perfis de evolução do GER associaram-se com: peso corporal (β=9,6, p<0,001) e suprimento energético (β=13,6, p=0,005) na amostra total; com peso corporal (β=7,1, p=0,018) e contributo energético dos lípidos (β=18,9, p=0,003) no grupo hipometabólico pré-TH; e com peso corporal (β=14,1, p<0,001) e desnutrição pela ASG (β=-171,0, p=0,007) no grupo normometabólico pré-TH.Houve redução transitória dos compartimentos corporais entre T0 e T1, mas a maioria destes recuperou para valores semelhantes aos pré-TH. As exceções foram a água extracelular, que diminuiu entre T0 e T2 (média 18,2 L e 17,8 L, p=0,042), a massa gorda (média 25,1 Kg e 21,7 Kg, p<0,001) e o IMG (média 10,6 Kg.m-2 e 9,3 Kg.m-2, p<0,001) que diminuíram entre T1 e T2. Relativamente à evolução dos indicadores de músculo esquelético e adiposidade ao longo do estudo: a evolução do IMM associou-se com força de preensão palmar (β=0,06, p<0,001), creatininémia (β=2,28, p<0,001) e número total de fármacos administrados (β=-0,21, p<0,001); a evolução da MCC associou-se com força de preensão palmar (β=0,16, p<0,001), creatininémia (β=4,17, p=0,008) e número total de fármacos administrados (β=-0,46, p<0,001); a evolução da %MG associou-se com força de preensão palmar (β=-0,11, p=0,028), história de toxicodependência (β=-5,75, p=0,024), creatininémia (β=-5,91, p=0,004) e suprimento proteico (β=-0,06, p=0,001); a evolução do IMG associou-se com história de toxicodependência (β=- 2,64, p=0,019), creatininémia (β=-2,86, p<0,001) e suprimento proteico (β=-0,02, p<0,001). A variação relativa (%Δ) desses compartimentos corporais entre T1 e T2 indicou o impacto da terapêutica imunossupressora na composição corporal: o regime baseado na ciclosporina associou-se positivamente com a %Δ do IMM (β=23,76, p<0,001) e %Δ da MCC (β=26,58, p<0,001) e negativamente com a %Δ MG (β=-25,64, p<0,001) e %Δ do IMG (β=-25,62, p<0,001), relativamente ao regime baseado no tacrolimus. Os esteróides não influenciaram a evolução do GER nem com a dos compartimentos corporais. Conclusões: O estado de nutrição, avaliado por ASG, melhorou significativamente após o TH, traduzida pela diminuição da prevalência de desnutrição. O normometabolismo pré-TH foi prevalente e associou-se à menor idade e à desnutrição pré- TH. O hipometabolismo pré-TH associou-se à história de toxicodependência e à sarcopénia pré-TH. O hipermetabolismo pré-TH associou-se ao maior IMM e à etiologia viral da doença hepática. Após o TH, houve normalização progressiva do estado metabólico. Foram identificados três perfis de evolução do GER, associando-se com: peso corporal e suprimento energético na amostra total; peso corporal e contributo energético dos lípidos no grupo hipometabólico pré- TH; e peso corporal e desnutrição pela ASG no grupo normometabólico pré-TH. Foram identificados diferentes perfis de evolução da composição corporal após TH. A evolução do músculo esquelético associou-se positivamente com a força de preensão palmar e a creatininémia e negativamente com o número total de fármacos administrados. A evolução da adiposidade (%MG e IMG) associou-se inversamente com a história de toxicodependência, a creatininémia e o suprimento proteico; adicionalmente, a %MG associou-se inversamente com a força de preensão palmar. O regime baseado na ciclosporina associou-se independentemente com diminuição da adiposidade e aumento do músculo esquelético, comparativamente ao regime baseado no tacrolimus.---------------------------ABSTRACT:Background: The assessment of nutritional status in patients undergoing liver transplantation (LTx) should be comprehensive, accounting for the wide spectrum of the clinical and metabolic conditions. The metabolic disturbances related to liver disease may limit the precision and accuracy of traditional nutritional assessment methods underestimating the undernourishment. After LTx, it is expected that many metabolic derangements improve with the recovery of liver function. However, some metabolic complications arising after LTx, related to nutritional status, hepatic denervation, and prolonged immunosuppression, may compromise the longterm outcome. A reliable longitudinal assessment of both energy metabolism and body compartments after LTx, combined with assessments of other factors potentially affecting the nutritional status, may enable a better interpretation on the relationship between the metabolic and the nutritional status. These reliable assessments may precociously identify nutritional risk conditions and optimize and customize clinical and nutritional strategies improving the prognosis. Objective: To assess longitudinally the nutritional status shortly after orthotopic LTx in patients with chronic liver disease, and identify factors, beyond surgery, determining different energy metabolism and body composition profiles.Methods: A cohort of consecutive patients who underwent LTx due to chronic liver disease was studied within a period of two years. The assessments were performed in three occasions: at the last visit before LTx (T0), after surgery as soon as respiratory and functional autonomy was established (T1), and approximately one month after surgery (T2). On each occasion all assessments were performed on the same day, and included: the dietary assessment by 24- hour dietary recall, nutritional status by the Subjective Global Assessment (SGA), the resting energy expenditure (REE) by indirect calorimetry, anthropometry, body composition by multifrequency bioelectrical impedance analysis, and muscle strength by handgrip strength. Both the lean mass index (LMI) and body cell mass (BCM) were used as surrogates of skeletal muscle, and both the percentage of fat mass (%FM) and fat mass index (FMI) of adiposity. The REE was predicted according to the Harris and Benedict equation. Hypermetabolism was defined as a measured REE more than 120% of the predicted value; normometabolism as a measured REE within 80-120% of the predicted value; and hypometabolism as a measured REE less than 80% of the predicted value. Multiple regression analysis was used: by logistic regression to identify variables associated with odds of belong each pre-LTx metabolic groups; by linear multiple regression analysis to identify variables associated with body compartments relative variations (%Δ) in the post-LTx period; and by mixed effects models to identify variables associated with the REE and body compartments profiles pre- and post-LTx. Results: Fifty six patients with a mean (SD) of 53.7 (8.5) years of age were included, 87.5% were men and 23.2% with alcoholic liver disease. After LTx 60.7% individuals were assigned to tacrolimus-based immunosuppressive regimen. The patients were assessed at a median time (inter-quartil range) of 90.5 (P25 44.2; P75 134.5) days before LTx (T0), at a median time of 9.0 (P25 7.0; P75 12.0) (T1) and 36 (P25 31.0; P75 43.0) (T2) days after LTx. After LTx the nutritional status significantly improved: the SGA-undernourishment decreased from 37.5% (T0) to 16.1% (T2) (p<0.001). Before LTx, 41.1% patients were normometabolic, 37.5% hypometabolic, and 21.4% hypermetabolic. The predictors of each pre-LTx metabolic group were: age (OR=0.899, p=0.010) and SGA-undernourishment (OR=5.038, p=0.015) for the normometabolic group; and LMI (OR=1.264, p=0.049) and viral etiology of liver disease (OR=8.297, p=0.019) for the hypermetabolic group. No multiple model was found for the pre-LTx hypometabolic group, but univariate association was found with history of drug addiction (OR=0.282, p=0.047) and pre- LTx sarcopenia (OR=8.000, p=0.040). After LTx a significant normalization of the metabolic status occurred, indicated by the increase in the prevalence of normometabolic patients (from T0: 41.1% to T2: 57.1%, p=0.040). Different REE profiles were found with REE stratified by preoperative metabolic status: in the hypometabolic group a significant progressive increase in mean REE (Kcal) was observed (T0: 1030.6; T1: 1436.1, p=0.001; T2: 1659.2, p<0.001); in the hypermetabolic group, a significant progressive decrease in mean REE (Kcal) was observed (T0: 2097.1; T1: 1662.5, p=0.024; T2: 1493.0, p<0.001); and in the normometabolic group, no significant differences were found. The REE profiles were associated with: body weight (β- estimate=9.6, p<0.001) and energy intake (β-estimate=13.6, p=0.005) in the whole sample; with body weight (β-estimate=7.1, p=0.018) and %TEV from lipids (β-estimate=18.9, p=0.003) in the hypometabolic group; and with body weight (β-estimate=14.1, p<0.001), and SGAundernourishment (β-estimate=-171, p=0.007) in the normometabolic group. A transient decrease in most body compartments occurred from T0 to T1, with subsequent catch-up to similar preoperative values. Exceptions were the extracellular water, decreasing from T0 to T2 (mean 18.2 L to 17.8 L, p=0.042), the fat mass (mean 25.1 Kg to 21.7 Kg, p<0.001) and FMI (mean 10.6 Kg.m-2 to 9.3 Kg.m-2, p<0.001), decreasing from T1 to T2. Significant predictors of skeletal muscle and adiposity profiles were found: LMI evolution was associated with handgrip strength (β-estimate=0.06, p<0.001), serum creatinine (β- estimate=2.28, p<0.001) and number of medications (β-estimate=-0.21, p<0.001); BCM evolution was associated with handgrip strength (β-estimate=0.16, p<0.001), serum creatinine (β-estimate=4.17, p<0.001) and number of medications (β-estimate=-0.46, p<0.001); the %FM evolution was associated with handgrip strength (β-estimate=-0.11, p=0.028), history of drug addiction (β-estimate=-5.75, p=0.024), serum creatinine (β-estimate=-5.91, p=0.004) and protein intake (β-estimate=-0.06, p=0.001); and FMI evolution was associated with history of drug addiction (β-estimate=-2.64, p=0.019), serum creatinine (β-estimate=-2.86, p<0.001) and protein intake (β-estimate=-0.02, p<0.001). The %Δ of the aforementioned body compartments from T1 to T2 indicated the influence of immunosuppressive agents on body composition: the cyclosporine-based regimen, compared with tacrolimus-based regimen, was positively associated with %Δ LMI (β-estimate=23.76, p<0.001) and %Δ BCM (β- estimate=26.58, p<0.001), and inversely associated with %Δ FM (β-estimate=-25.64, p<0.001) and %Δ FMI (β-estimate=-25.62, p<0.001). No significant changes in REE or body composition were observed associated with dose or duration of steroid therapy. Conclusions: The SGA-assessed nutritional status improved shortly after LTx, with significant decrease in prevalence undernourished individuals. XXI Preoperative normometabolism was prevalent and was associated with younger age and SGAundernourishment before LTx. Preoperative hypometabolism was associated with history of drug addiction and pre-LTx sarcopenia. Preoperative hypermetabolism was associated with higher LMI and viral etiology of liver disease. A significant normalization of the metabolic status was observed after LTx. The REE profiles were positively predicted by body weight and energy intake in the whole sample, by body weight and percentage of energy intake from lipids in the preoperative hypometabolic patients, and by body weight and SGA–undernourishment in the preoperative normometabolic patients. Different body composition profiles were found after LTx. Skeletal muscle profile was positively associated with handgrip strength and serum creatinine, and inversely with the number of medications. The adiposity profile was inversely associated with history of drug addiction, serum creatinine and protein intake. Additionally, the %FM evolution was inversely associated with handgrip strength. The cyclosporine-based regimen, compared with tacrolimus-based regimen, was independently associated with skeletal muscle increase and adiposity decrease.
Resumo:
RESUMO: Objectivo: Face à exiguidade de estudos em Portugal nesta temática, o objectivo do estudo foi a análise entre a aptidão cardiorrespiratória (ACR), e a prevalência da pré-obesidade e obesidade em crianças do 4º ano do 1º ciclo. Método: Foi efectuada uma revisão sistemática da literatura (RSL), evocando-se estudos tranversais e de RCT, cruzando-se com resultados do estudo observacional, do Agrupamento de Escolas Professor Armando Lucena, do concelho de Mafra, distrito de Lisboa. Do estudo de RSL, e estudo observacional, fez-se a análise da verificação da associação inversa, entre a “aptidão cardiorespiratória, a pré-obesidade e obesidade”. O estudo observacional, foi transversal, incidindo sobre 143 crianças, (73 raparigas) dos 9-12 anos de idade do concelho de Mafra. Foram utilizados os pontos de corte da International Obesity Task Force (IOTF), para definir a pré-obesidade e obesidade. Registou-se o IMC e a % Massa Gorda por bioimpedância. A avaliação da ACR foi efectuada através do teste Vaivém 20 metros Fitnessgram, utilizando-se equação de Fernhall et al., (1998). Os alunos foram avaliados por questionário sobre actividade física (AF) extra-curricular (QAD, Telama et al., 1997); os pais sobre os níveis AF (IPAQ, Bauman et al., 2009) e estatuto sócio-económico (ESE). Resultados: Os resultados do estudo observacional, corroboram os de outros estudos RSL. Não houve diferenças entre géneros na prevalência de pré-obesidade e obesidade: rapazes (20.55% e 8.21%) e raparigas (34.28% e 5.71%) (p<0.176). As crianças com maior ACR têm menor IMC (p<0.01) e MG (p<0.001) e a idade não esteve associada à ACR. Os pré-obesos são na sua maioria insuficientemente activos, e os normoponderais são insuficientemente activos (p=0.033). Não houve associação entre o ESE e AF dos pais e o IMC, ACR ou QAD dos alunos. Com base nos resultados encontrados na revisão, procurou-se situar diferentes abordagens teóricas sobre a actividade física, dando ênfase principal à importância “ da promoção (acesso) da actividade física através da educação física orientada pedagogicamente em todos os ciclos de ensino. Conclusão: As crianças que tiveram maior ACR registaram menor IMC e MG, independente da idade e do sexo. Verificou-se ainda que as variáveis de ESE e AF dos pais, não está associada aos resultados da ACR, IMC e MG das crianças. ABSTRACT: Objective: Given the paucity of studies in Portugal on this theme, the goal of the study was to analyse the of cardiorespiratory fitness (CRF), and the prevalence of overweight and obesity in children attending the fourth year of primary school. Method: A systematic literature review was conducted, in which cross-cutting studies and RCT were covered and, intersected with observational results obtained, from the group of Schools Professor Armando Lucena, located in, the municipality of Mafra, Lisbon district. From the systematic review of literature (SRL), plus the observational study, the verification analysis of the inverse association between 'cardiorespiratory fitness, pre-obesity and obesity' was performed.The observational study was cross-sectional, focusing on 143 children (73 girls) of 9-12 years old. To define overweight and obesity the IOTF cutoffs were used. BMI and percentage of fat mass were recorded by means of bioelectrical impedance. The assessment was made through the CRF test shuttle Fitnessgram 20 meters, using the equation proposed by Fernhall et al., (1998). Students were assessed by questionnaire on physical activity (PA), extra-curricular PA (PAF Telama et al., 1997); parents were questioned regarding their PA levels (IPAQ, Bauman et al., 2009) and socio-economic status (SES). Results: The results of the observational study, corroborate, other SRL studies. There were no gender differences in the prevalence of overweight and obesity: men (20. 55% and 8.21%) and girls (34.28% and 5.71%) (p <0.176). Children with higher BMI have a lower CRF (p <0.01) and MG (p <0.001). Age was not observed to be associated with CRF. The pre-obese are mostly insufficiently active, and the normalweight are insufficiently active (p = 0.033). There was no association between the PA, the ESS, the parents, and the BMI, the CRF or the PAF of the students. Based on the results found in the review, different theoretical approaches regarding physical activity were. Emphasis was given to the importance of promoting the access to physical activity through pedagogically oriented physical education in all cycles of education. Conclusion: Children who had higher ACR showed lower FAT and BMI, regardless of age and sex. Furthermore, it was found that parents’ SES and PA variables are, not associated to children’s CRF, BMI and FAT.
Resumo:
Objectives. The purpose of this study was to analyze the relationship between adiposity indicators, age and physical fitness related to health. Methods. The sample involved 43 boys and 53 girls. The tests applied were: the Sit-up (S), Modified Pull-up (MP) and Run/Walk (RW) tests. Fat indicators were: Body Mass Index (BMI), subscapular (SB), triceps (TR), and calf (C) skinfolds; the skinfolds sum (Σ) and percentage of fat mass (%F). Results. The results indicated negative correlation between MP and TR, MC, Σ and %F for boys and girls (r = -0,42 a r = -0,52, P ≤ 0,01). There was positive correlation among the S test and age for both groups (r = 0,35, P ≤ 0,05 a r = 0,52, P ≤ 0,01), and negative on the S test with SB, MC and %F for the girls (r = -0,28 a r = -0,29, P ≤ 0,05). Negative correlation also was verified between RW with TR for the boys (r = -0,30, P < 0,05). Conclusion. Age seemed to be related with better performance, and adiposity with weaker performance, mostly in the MP where it is necessary to support their own body mass. Thus, these factors should be considered in the interpretation of results and when establishing criteria for health-related tests with these characteristics. © 2013 Revista Andaluza de Medicina del Deporte.