100 resultados para Peptidyl-dipeptidase A


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sickle cell disease (SCD) pathogenesis leads to recurrent vaso-occlusive and hemolytic processes, causing numerous clinical complications including renal damage. As vasoconstrictive mechanisms may be enhanced in SCD, due to endothelial dysfunction and vasoactive protein production, we aimed to determine whether the expression of proteins of the renin-angiotensin system (RAS) may be altered in an animal model of SCD. Plasma angiotensin II (Ang II) was measured in C57BL/6 (WT) mice and mice with SCD by ELISA, while quantitative PCR was used to compare the expressions of the genes encoding the angiotensin-II-receptors 1 and 2 (AT1R and AT2R) and the angiotensin-converting enzymes (ACE1 and ACE2) in the kidneys, hearts, livers and brains of mice. The effects of hydroxyurea (HU; 50-75mg/kg/day, 4weeks) treatment on these parameters were also determined. Plasma Ang II was significantly diminished in SCD mice, compared with WT mice, in association with decreased AT1R and ACE1 expressions in SCD mice kidneys. Treatment of SCD mice with HU reduced leukocyte and platelet counts and increased plasma Ang II to levels similar to those of WT mice. HU also increased AT1R and ACE2 gene expression in the kidney and heart. Results indicate an imbalanced RAS in an SCD mouse model; HU therapy may be able to restore some RAS parameters in these mice. Further investigations regarding Ang II production and the RAS in human SCD may be warranted, as such changes may reflect or contribute to renal damage and alterations in blood pressure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: End-stage kidney disease patients continue to have markedly increased cardiovascular disease morbidity and mortality. Analysis of genetic factors connected with the renin-angiotensin system that influences the survival of the patients with end-stage kidney disease supports the ongoing search for improved outcomes. Objective: To assess survival and its association with the polymorphism of renin-angiotensin system genes: angiotensin I-converting enzyme insertion/deletion and angiotensinogen M235T in patients undergoing hemodialysis. Methods: Our study was designed to examine the role of renin-angiotensin system genes. It was an observational study. We analyzed 473 chronic hemodialysis patients in four dialysis units in the state of Rio de Janeiro. Survival rates were calculated by the Kaplan-Meier method and the differences between the curves were evaluated by Tarone-Ware, Peto-Prentice, and log rank tests. We also used logistic regression analysis and the multinomial model. A p value ≤ 0.05 was considered to be statistically significant. The local medical ethics committee gave their approval to this study. Results: The mean age of patients was 45.8 years old. The overall survival rate was 48% at 11 years. The major causes of death were cardiovascular diseases (34%) and infections (15%). Logistic regression analysis found statistical significance for the following variables: age (p = 0.000038), TT angiotensinogen (p = 0.08261), and family income greater than five times the minimum wage (p = 0.03089), the latter being a protective factor. Conclusions: The survival of hemodialysis patients is likely to be influenced by the TT of the angiotensinogen M235T gene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The new angiotensin-converting enzyme (ACE) inhibitor idrapril acts by binding the catalytically important zinc ion to a hydroxamic group. We investigated its pharmacodynamic and pharmacokinetic properties in 8 healthy men: Increasing doses of 1, 5, and 25 mg idrapril as well as placebo or 5 mg captopril were administered intravenously (i.v.) at 1-week intervals. Six of the subjects received 100 mg idrapril orally (p.o.) last, and two ingested oral placebo as a double-blind control. Blood pressure (BP) and heart rate (HR) remained unchanged. No serious side effects were observed. ACE inhibition in vivo was evaluated by changes in the ratio of specifically measured plasma angiotensin II (AngII) and AngI concentrations determined by high-performance liquid chromatography/radioimmunoassay (HPLC/RIA) techniques. Plasma ACE activity in vitro was estimated by radioenzymatic assay; it was suppressed by > or = 93% at 15 min after injection of 25 mg idrapril or 5 mg captopril and by 96% 2 h after idrapril intake. Mean AngII levels were decreased dose dependently at 15 min after idrapril injections. At the same time, plasma renin activity (PRA) and AngI increased according to the doses. The AngII/AngI ratio was clearly related to plasma idrapril levels (r = -0.88, n = 60). Oral idrapril inhibited ACE maximally at 1-4 h after dosing, when < 7% of initial ACE activity was observed in vitro and in vivo. Idrapril is a safe and efficient ACE inhibitor in human subjects. It is well absorbed orally. Besides having a slightly slower onset of action, idrapril has pharmacodynamic effects comparable to those of captopril.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The acute blood pressure response to an angiotensin converting enzyme inhibitor (enalaprilat) was compared in patients with uncomplicated essential hypertension with that obtained under similar conditions with a calcium entry blocker (nifedipine). The patients were studied after a 3 week washout period. At a 48 h interval, each patient received in randomized order either enalaprilat (5 mg i.v.) or nifedipine (10 mg p.o.). Enalaprilat and nifedipine were equally effective in acutely lowering blood pressure. However, good responders to one agent were not necessarily good responders to the other.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the endocrine and renal effects of the dual inhibitor of angiotensin converting enzyme and neutral endopeptidase, MDL 100,240. DESIGN: A randomized, placebo-controlled, crossover study was performed in 12 healthy volunteers. METHODS: MDL 100,240 was administered intravenously over 20 min at single doses of 6.25 and 25 mg in subjects with a sodium intake of 280 (n = 6) or 80 (n = 6) mmol/day. Measurements were taken of supine and standing blood pressure, plasma angiotensin converting enzyme activity, angiotensin II, atrial natriuretic peptide, urinary atrial natriuretic peptide and cyclic GMP excretion, effective renal plasma flow and the glomerular filtration rate as p-aminohippurate and inulin clearances, electrolytes and segmental tubular function by endogenous lithium clearance. RESULTS: Supine systolic blood pressure was consistently decreased by MDL 100,240, particularly after the high dose and during the low-salt intake. Diastolic blood pressure and heart rate did not change. Plasma angiotensin converting enzyme activity decreased rapidly and dose-dependently. In both the high- and the low-salt treatment groups, plasma angiotensin II levels fell and renin activity rose accordingly, while plasma atrial natriuretic peptide levels remained unchanged. In contrast, urinary atrial natriuretic peptide excretion increased dose-dependently under both diets, as did urinary cyclic GMP excretion. Effective renal plasma flow and the glomerular filtration rate did not change. The urinary flow rate increased markedly during the first 2 h following administration of either dose of MDL 100,240 (P < 0.001) and, similarly, sodium excretion tended to increase from 0 to 4 h after the dose (P = 0.07). Potassium excretion remained stable. Proximal and distal fractional sodium reabsorption were not significantly altered by the treatment. Uric acid excretion was increased. The safety and clinical tolerance of MDL 100,240 were good. CONCLUSIONS: The increased fall in blood pressure in normal volunteers together with the preservation of renal hemodynamics and the increased urinary volume, atrial natriuretic peptide and cyclic GMP excretion distinguish MDL 100,240 as a double-enzyme inhibitor from inhibitors of the angiotensin converting enzyme alone. The differences appear to be due, at least in part, to increased renal exposure to atrial natriuretic peptide following neutral endopeptidase blockade.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is widely accepted that pharmacologic reduction of the blood pressure of hypertensive patients reduces the risk of at least some of the major cardiovascular complications (1-5). All major studies were carried out before orally active converting enzyme inhibitors had become available. In other words, very effective antihypertensive drugs have been around for quite some time and have already proven their efficacy. Therefore, the considerable enthusiasm that has developed during the very recent years for the new converting enzyme inhibitors should be evaluated in the light of previously available antihypertensive drugs, the more so, as drugs cheaper than converting enzyme inhibiting agents are presently available. Thus, the increased expense when using this new class of antihypertensive compounds should be justified by a therapeutic gain. When evaluating a class of antihypertensive drugs such as converting enzyme inhibitors, there are basically three main considerations: What is their efficacy in long-term use? This includes the effect on blood pressure, on heart, on hemodynamics, and on blood flow distribution. What are the metabolic effects? What is the effect on sodium and potassium excretion? How are the serum lipids affected by its use? Are there any untoward effects related either to the chemical structure of the compound per se or rather to the approach? In particular, are there any central effects of the drug which can cause discomfort to the patient? The following discussion has the principal aim to review these aspects with chronic use of oral converting enzyme inhibiting agents without, however, even attempting to provide an exhaustive review of the subject.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The vascular effects of angiotensin converting enzyme inhibitors are mediated by the inhibition of the dual action of angiotensin converting enzyme (ACE): production of angiotensin II and degradation of bradykinin. The deleterious effect of converting enzyme inhibitors (CEI) on neonatal renal function have been ascribed to the elevated activity of the renin-angiotensin system. In order to clarify the role of bradykinin in the CEI-induced renal dysfunction of the newborn, the effect of perindoprilat was investigated in anesthetized newborn rabbits with intact or inhibited bradykinin B2 receptors. Inulin and PAH clearances were used as indices of GFR and renal plasma flow, respectively. Perindoprilat (20 microg/kg i.v.) caused marked systemic and renal vasodilation, reflected by a fall in blood pressure and renal vascular resistance. GFR decreased, while urine flow rate did not change. Prior inhibition of the B2 receptors by Hoe 140 (300 microg/kg s.c.) did not prevent any of the hemodynamic changes caused by perindoprilat, indicating that bradykinin accumulation does not contribute to the CEI-induced neonatal renal effects. A control group receiving only Hoe 140 revealed that BK maintains postglomerular vasodilation via B2 receptors in basal conditions. Thus, the absence of functional B2 receptors in the newborn was not responsible for the failure of Hoe 140 to prevent the perindoprilat-induced changes. Species- and/or age-related differences in the kinin-metabolism could explain these results, suggesting that in the newborn rabbit other kininases than ACE are mainly responsible for the degradation of bradykinin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new, orally active angiotensin converting enzyme (ACE) inhibitor, CGS 14824A, was evaluated in 12 healthy male volunteers. Two groups each of 6 volunteers were given 5 or 10 mg once daily p.o. for 8 days. Four hours after the first and the last morning doses, plasma angiotensin II, aldosterone and plasma converting enzyme activity had fallen, while blood angiotensin I and plasma renin activity had risen. Throughout the study, more than 90% inhibition of ACE was found immediately before giving either the 5 or 10 mg dose and 50% blockade was still present 72 h following the last dose. Based on the determination of ACE, there was no evidence of drug accumulation. No significant change in blood pressure or heart rate was observed during the course of the study. CGS 14824A was an effective, orally active, long-lasting and well tolerated converting enzyme inhibitor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new, orally active angiotensin converting enzyme (ACE) inhibitor, CGS 16617, has been evaluated in normotensive subjects during acute and prolonged administration. Single ascending doses of CGS 16617 20 to 100 mg were given to 9 normotensive volunteers at one week intervals and the changes in blood pressure, plasma ACE and renin activity were examined up to 72 h after drug intake. Also, CGS 16617 50 mg/day or placebo were given for 30 days to 8 and 6 normotensive subjects, respectively, maintained on an unrestricted salt diet. Blood pressure was measured daily in the office and ambulatory blood pressure profiles were also obtained before, during and after therapy, using the Remler M 2000 blood pressure recording system. CGS 16617 was an effective and long lasting ACE inhibitor. It did not induce a consistent change in blood pressure, but, the individual responses were very variable and several subjects experienced a clear decrease in the average of the blood pressures recorded during the daytime.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Previous experiments have shown that a decoction of Bauhinia forficata leaves reduces the changes in carbohydrate and protein metabolism that occur in rats with streptozotocin-induced diabetes. In the present investigation, the serum activities of enzymes known to be reliable toxicity markers were monitored in normal and streptozotocin-diabetic rats to discover whether the use of B. forficata decoction has toxic effects on liver, muscle or pancreas tissue or on renal microcirculation. Methods: An experimental group of normal and streptozotocin-diabetic rats received an aqueous decoction of fresh B. forficata leaves (150 g/L) by mouth for 33 days while a control group of normal and diabetic rats received water for the same length of time. The serum activity of the toxicity markers lactate dehydrogenase, creatine kinase, amylase, angiotensin-converting enzyme and bilirubin were assayed before receiving B. forficata decoction and on day 19 and 33 of treatment. Results: The toxicity markers in normal and diabetic rats were not altered by the diabetes itself nor by treatment with decoction. Whether or not they received B. forficata decoction the normal rats showed a significant increase in serum amylase activity during the experimental period while there was a tendency for the diabetic rats, both treated and untreated with decoction, to have lower serum amylase activities than the normal rats. Conclusions: Administration of an aqueous decoction of B. forficata is a potential treatment for diabetes and does not produce toxic effects measurable with the enzyme markers used in our study. © 2004 Pepato et al; licensee BioMed Central Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several studies show that portions of intramyocardial coronary arteries are spared of arteriosclerosis, involving morphological, embryological, biochemical and pathophysiological aspects. Endothelial function is significantly affected in the segment of transition, as estimated by the vasoactive response to Ach. These findings suggest that myocardial bridge can provide protection against arteriosclerosis by counteracting the negative effects of endothelial dysfunction. The intramyocardial portion's protection phenomenon deserves further scientific research on all research fronts. Improved morphological, biomechanical and especially physiological and embryological knowledge may be the key to a future window of opportunity for chronic arterial disease therapy and prevention. In addition, this review discusses possible therapeutic approaches for symptomatic coronary ischemia caused by myocardial bridges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La régulation de la transcription est un processus complexe qui a évolué pendant des millions d’années permettant ainsi aux cellules de s’adapter aux changements environnementaux. Notre laboratoire étudie le rôle de la rapamycine, un agent immunosuppresseur et anticancéreux, qui mime la carence nutritionelle. Afin de comprendre les mécanismes impliqués dans la réponse a la rapamycine, nous recherchons des mutants de la levure Saccaromyces cerevisiae qui ont un phenotype altérée envers cette drogue. Nous avons identifié le gène RRD1, qui encode une peptidyl prolyl isomérase et dont la mutation rend les levures très résistantes à la rapamycine et il semble que se soit associé à une réponse transcriptionelle alterée. Mon projet de recherche de doctorat est d’identifier le rôle de Rrd1 dans la réponse à la rapamycine. Tout d’abord nous avons trouvé que Rrd1 interagit avec l’ARN polymérase II (RNAPII), plus spécifiquement avec son domaine C-terminal. En réponse à la rapamycine, Rrd1 induit un changement dans la conformation du domaine C-terminal in vivo permettant la régulation de l’association de RNAPII avec certains gènes. Des analyses in vitro ont également montré que cette action est directe et probablement liée à l’activité isomérase de Rrd1 suggérant un rôle pour Rrd1 dans la régulation de la transcription. Nous avons utilisé la technologie de ChIP sur micropuce pour localiser Rrd1 sur la majorité des gènes transcrits par RNAPII et montre que Rrd1 agit en tant que facteur d’élongation de RNAPII. Pour finir, des résultats suggèrent que Rrd1 n’est pas seulement impliqué dans la réponse à la rapamycine mais aussi à differents stress environnementaux, nous permettant ainsi d’établir que Rrd1 est un facteur d’élongation de la transcription requis pour la régulation de la transcription via RNAPII en réponse au stress.