974 resultados para People Detection
Resumo:
In this paper, we evaluate the Probabilistic Occupancy Map (POM) pedestrian detection algorithm on the PETS 2009 benchmark dataset. POM is a multi-camera generative detection method, which estimates ground plane occupancy from multiple background subtraction views. Occupancy probabilities are iteratively estimated by fitting a synthetic model of the background subtraction to the binary foreground motion. Furthermore, we test the integration of this algorithm into a larger framework designed for understanding human activities in real environments. We demonstrate accurate detection and localization on the PETS dataset, despite suboptimal calibration and foreground motion segmentation input.
Resumo:
This paper proposes a method to locate and track people by combining evidence from multiple cameras using the homography constraint. The proposed method use foreground pixels from simple background subtraction to compute evidence of the location of people on a reference ground plane. The algorithm computes the amount of support that basically corresponds to the ""foreground mass"" above each pixel. Therefore, pixels that correspond to ground points have more support. The support is normalized to compensate for perspective effects and accumulated on the reference plane for all camera views. The detection of people on the reference plane becomes a search for regions of local maxima in the accumulator. Many false positives are filtered by checking the visibility consistency of the detected candidates against all camera views. The remaining candidates are tracked using Kalman filters and appearance models. Experimental results using challenging data from PETS`06 show good performance of the method in the presence of severe occlusion. Ground truth data also confirms the robustness of the method. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
[EN]Detecting people is a key capability for robots that operate in populated environments. In this paper, we have adopted a hierarchical approach that combines classifiers created using supervised learning in order to identify whether a person is in the view-scope of the robot or not. Our approach makes use of vision, depth and thermal sensors mounted on top of a mobile platform.
Resumo:
This paper presents a prototype tracking system for tracking people in enclosed indoor environments where there is a high rate of occlusions. The system uses a stereo camera for acquisition, and is capable of disambiguating occlusions using a combination of depth map analysis, a two step ellipse fitting people detection process, the use of motion models and Kalman filters and a novel fit metric, based on computationally simple object statistics. Testing shows that our fit metric outperforms commonly used position based metrics and histogram based metrics, resulting in more accurate tracking of people.
Resumo:
In this paper we present a component based person detection system that is capable of detecting frontal, rear and near side views of people, and partially occluded persons in cluttered scenes. The framework that is described here for people is easily applied to other objects as well. The motivation for developing a component based approach is two fold: first, to enhance the performance of person detection systems on frontal and rear views of people and second, to develop a framework that directly addresses the problem of detecting people who are partially occluded or whose body parts blend in with the background. The data classification is handled by several support vector machine classifiers arranged in two layers. This architecture is known as Adaptive Combination of Classifiers (ACC). The system performs very well and is capable of detecting people even when all components of a person are not found. The performance of the system is significantly better than a full body person detector designed along similar lines. This suggests that the improved performance is due to the components based approach and the ACC data classification structure.
Resumo:
A new class of shape features for region classification and high-level recognition is introduced. The novel Randomised Region Ray (RRR) features can be used to train binary decision trees for object category classification using an abstract representation of the scene. In particular we address the problem of human detection using an over segmented input image. We therefore do not rely on pixel values for training, instead we design and train specialised classifiers on the sparse set of semantic regions which compose the image. Thanks to the abstract nature of the input, the trained classifier has the potential to be fast and applicable to extreme imagery conditions. We demonstrate and evaluate its performance in people detection using a pedestrian dataset.
Resumo:
Background. Falls and fear of falling present a major risk to older people as both can affect their quality of life and independence. Mobile assistive technologies (AT) fall detection devices may maximise the potential for older people to live independently for as long as possible within their own homes by facilitating early detection of falls. Aims. To explore the experiences and perceptions of older people and their carers as to the potential of a mobile falls detection AT device. Methods. Nine focus groups with 47 participants including both older people with a range of health conditions and their carers. Interviews were audio recorded, transcribed verbatim, and thematically analysed. Results. Four key themes were identified relating to participants’ experiences and perceptions of falling and the potential impact of a mobile falls detector: cause of falling, falling as everyday vulnerability, the environmental context of falling, and regaining confidence and independence by having a mobile falls detector. Conclusion. The perceived benefits of a mobile falls detector may differ between older people and their carers. The experience of falling has to be taken into account when designing mobile assistive technology devices as these may influence perceptions of such devices and how older people utilise them.
Resumo:
* Chronic heart failure (CHF) is found in 1.5%–2.0% of Australians. Considered rare in people aged less than 45 years, its prevalence increases to over 10% in people aged ≥ 65 years. * CHF is one of the most common reasons for hospital admission and general practitioner consultation in the elderly (≥ 70 years). * Common causes of CHF are ischaemic heart disease (present in > 50% of new cases), hypertension (about two-thirds of cases) and idiopathic dilated cardiomyopathy (around 5%–10% of cases). * Diagnosis is based on clinical features, chest x-ray and objective measurement of ventricular function (eg, echocardiography). Plasma levels of B-type natriuretic peptide (BNP) may have a role in diagnosis, primarily as a test for exclusion. Diagnosis may be strengthened by a beneficial clinical response to treatment(s) directed towards amelioration of symptoms. * Management involves prevention, early detection, amelioration of disease progression, relief of symptoms, minimisation of exacerbations, and prolongation of survival.
Resumo:
Background/Aims: The Mini Addenbrooke’s Cognitive Examination (M-ACE) is the abbreviated version of the widely-used Addenbrooke’s Cognitive Examination (ACE-III), a cognitive screening tool that is used internationally in the assessment of mild cognitive impairment (MCI) and dementia. The objectives of this study were to investigate the diagnostic accuracy of the M-ACE with individuals aged 75 and over to distinguish between those who do and do not have a dementia or MCI, and also to establish whether the cut-off scores recommended by Hsieh et al. (2014) [9] in the original validation study for the M-ACE are optimal for this age group. Methods: The M-ACE was administered to 58 participants (24 with a diagnosis of dementia, 17 with a diagnosis of MCI and 17 healthy controls). The extent to which scores distinguished between groups (dementia, MCI or no diagnosis) was explored using receiver operating characteristic curve analysis. Results: The optimal cut-off for detecting dementia was ≤ 21/30 (score ≤ 21/30 indicating dementia with a sensitivity of 0.95, a specificity of 1 and a positive predictive value of 1) compared to the original higher published cut-off of ≤ 25/30 (sensitivity of 0.95, specificity of 0.70 and a positive predictive value of 0.82 in this sample). Conclusions: The M-ACE has excellent diagnostic accuracy for the detection of dementia in a UK clinical sample. It may be necessary to consider lower cut-offs than those given in the original validation study.
Resumo:
Person tracking systems to date have either relied on motion detection or optical flow as a basis for person detection and tracking. As yet, systems have not been developed that utilise both these techniques. We propose a person tracking system that uses both, made possible by a novel hybrid optical flow-motion detection technique that we have developed. This provides the system with two methods of person detection, helping to avoid missed detections and the need to predict position, which can lead to errors in tracking and mistakes when handling occlusion situations. Our results show that our system is able to track people accurately, with an average error less than four pixels, and that our system outperforms the current CAVIAR benchmark system.
Resumo:
Surveillance networks are typically monitored by a few people, viewing several monitors displaying the camera feeds. It is then very difficult for a human operator to effectively detect events as they happen. Recently, computer vision research has begun to address ways to automatically process some of this data, to assist human operators. Object tracking, event recognition, crowd analysis and human identification at a distance are being pursued as a means to aid human operators and improve the security of areas such as transport hubs. The task of object tracking is key to the effective use of more advanced technologies. To recognize an event people and objects must be tracked. Tracking also enhances the performance of tasks such as crowd analysis or human identification. Before an object can be tracked, it must be detected. Motion segmentation techniques, widely employed in tracking systems, produce a binary image in which objects can be located. However, these techniques are prone to errors caused by shadows and lighting changes. Detection routines often fail, either due to erroneous motion caused by noise and lighting effects, or due to the detection routines being unable to split occluded regions into their component objects. Particle filters can be used as a self contained tracking system, and make it unnecessary for the task of detection to be carried out separately except for an initial (often manual) detection to initialise the filter. Particle filters use one or more extracted features to evaluate the likelihood of an object existing at a given point each frame. Such systems however do not easily allow for multiple objects to be tracked robustly, and do not explicitly maintain the identity of tracked objects. This dissertation investigates improvements to the performance of object tracking algorithms through improved motion segmentation and the use of a particle filter. A novel hybrid motion segmentation / optical flow algorithm, capable of simultaneously extracting multiple layers of foreground and optical flow in surveillance video frames is proposed. The algorithm is shown to perform well in the presence of adverse lighting conditions, and the optical flow is capable of extracting a moving object. The proposed algorithm is integrated within a tracking system and evaluated using the ETISEO (Evaluation du Traitement et de lInterpretation de Sequences vidEO - Evaluation for video understanding) database, and significant improvement in detection and tracking performance is demonstrated when compared to a baseline system. A Scalable Condensation Filter (SCF), a particle filter designed to work within an existing tracking system, is also developed. The creation and deletion of modes and maintenance of identity is handled by the underlying tracking system; and the tracking system is able to benefit from the improved performance in uncertain conditions arising from occlusion and noise provided by a particle filter. The system is evaluated using the ETISEO database. The dissertation then investigates fusion schemes for multi-spectral tracking systems. Four fusion schemes for combining a thermal and visual colour modality are evaluated using the OTCBVS (Object Tracking and Classification in and Beyond the Visible Spectrum) database. It is shown that a middle fusion scheme yields the best results and demonstrates a significant improvement in performance when compared to a system using either mode individually. Findings from the thesis contribute to improve the performance of semi-automated video processing and therefore improve security in areas under surveillance.
Resumo:
Influenza is a widespread disease occurring in seasonal epidemics, and each year is responsible for up to 500,000 deaths worldwide. Influenza can develop into strains which cause severe symptoms and high mortality rates, and could potentially reach pandemic status if the virus’ properties allow easy transmission. Influenza is transmissible via contact with the virus, either directly (infected people) or indirectly (contaminated objects); via reception of large droplets over short distances (one metre or less); or through inhalation of aerosols containing the virus expelled by infected individuals during respiratory activities, that can remain suspended in the air and travel distances of more than one metre (the aerosol route). Aerosol transmission of viruses involves three stages: production of the droplets containing viruses; transport of the droplets and ability of a virus to remain intact and infectious; and reception of the droplets (via inhalation). Our understanding of the transmission of influenza viruses via the aerosol route is poor, and thus our ability to prevent a widespread outbreak is limited. This study explored the fate of viruses in droplets by investigating the effects of some physical factors on the recovery of both a bacteriophage model and influenza virus. Experiments simulating respiratory droplets were carried out using different types of droplets, generated from a commonly used water-like matrix, and also from an ‘artificial mucous’ matrix which was used to more closely resemble respiratory fluids. To detect viruses in droplets, we used the traditional plaque assay techniques, and also a sensitive, quantitative PCR assay specifically developed for this study. Our results showed that the artificial mucous suspension enhanced the recovery of infectious bacteriophage. We were able to report detection limits of infectious bacteriophage (no bacteriophage was detected by the plaque assay when aerosolised from a suspension of 103 PFU/mL, for three of the four droplet types tested), and that bacteriophage could remain infectious in suspended droplets for up to 20 minutes. We also showed that the nested real-time PCR assay was able to detect the presence of bacteriophage RNA where the plaque assay could not detect any intact particles. Finally, when applying knowledge from the bacteriophage experiments, we reported the quantitative recoveries of influenza viruses in droplets, which were more consistent and stable than we had anticipated. Influenza viruses can be detected up to 20 minutes (after aerosolisation) in suspended aerosols and possibly beyond. It also was detectable from nebulising suspensions with relatively low concentrations of viruses.
Resumo:
Automatic species recognition plays an important role in assisting ecologists to monitor the environment. One critical issue in this research area is that software developers need prior knowledge of specific targets people are interested in to build templates for these targets. This paper proposes a novel approach for automatic species recognition based on generic knowledge about acoustic events to detect species. Acoustic component detection is the most critical and fundamental part of this proposed approach. This paper gives clear definitions of acoustic components and presents three clustering algorithms for detecting four acoustic components in sound recordings; whistles, clicks, slurs, and blocks. The experiment result demonstrates that these acoustic component recognisers have achieved high precision and recall rate.
Resumo:
The ability to detect unusual events in surviellance footage as they happen is a highly desireable feature for a surveillance system. However, this problem remains challenging in crowded scenes due to occlusions and the clustering of people. In this paper, we propose using the Distributed Behavior Model (DBM), which has been widely used in computer graphics, for video event detection. Our approach does not rely on object tracking, and is robust to camera movements. We use sparse coding for classification, and test our approach on various datasets. Our proposed approach outperforms a state-of-the-art work which uses the social force model and Latent Dirichlet Allocation.