1000 resultados para Penobscot Bay


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the untitled, historic nautical chart: [A chart of the coast from Skuttock Point, westward to Musketo Island] (sheet originally published in 1776). The map is [sheet 36] from the Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England, from surveys taken by Samuel Holland and published by J.F.W. Des Barres, 1776. Scale [ca. 1:135,000]. This layer is image 1 of 2 total images of the two sheet source map, representing the southern portion of the map. Covers a portion of Penobscot Bay, Maine. The image is georeferenced to the surface of the earth and fit to the 'World Mercator' (WGS 84) projected coordinate system. All map collar information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as harbors, inlets, rocks, channels, points, coves, shoals, islands, and more. Includes also selected land features such as cities and towns, and buildings. Relief is shown by hachures; depths by soundings. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection. The entire Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England has been scanned and georeferenced as part of this selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the untitled, historic nautical chart: [[A chart of the coast from Skuttock Point, westward to Musketo Island] (sheet originally published in 1776). The map is [sheet 37] from the Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England, from surveys taken by Samuel Holland and published by J.F.W. Des Barres, 1776. Scale [ca. 1:135,000]. This layer is image 2 of 2 total images of the two sheet source map, representing the northern portion of the map. Covers Mount Desert Island, Blue Hill Bay, Frenchman Bay, and a portion of Penobscot Bay, Maine. The image is georeferenced to the surface of the earth and fit to the 'World Mercator' (WGS 84) projected coordinate system. All map collar information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as harbors, inlets, rocks, channels, points, coves, shoals, islands, and more. Includes also selected land features such as cities and towns, and buildings. Relief is shown by hachures; depths by soundings. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection. The entire Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England has been scanned and georeferenced as part of this selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the untitled, historic nautical chart: [Entrance to Penobscot Bay] (sheet originally published in 1776). The map is [sheet 38] from the Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England, from surveys taken by Samuel Holland and published by J.F.W. Des Barres, 1781. Scale [ca. 1:50,000]. This layer is image 1 of 2 total images of the two sheet source map, representing the western portion of the map. Covers a portion of Penobscot Bay, Maine. The image is georeferenced to the surface of the earth and fit to the 'World Mercator' (WGS 84) projected coordinate system. All map collar information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as harbors, inlets, rocks, channels, points, coves, shoals, islands, and more. Includes also selected land features such as cities and towns, and buildings. Relief is shown by hachures; depths by soundings. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection. The entire Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England has been scanned and georeferenced as part of this selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the untitled, historic nautical chart: [Entrance to Penobscot Bay] (sheet originally published in 1776). The map is [sheet 39] from the Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England, from surveys taken by Samuel Holland and published by J.F.W. Des Barres, 1781. Scale [ca. 1:50,000]. This layer is image 2 of 2 total images of the two sheet source map, representing the eastern portion of the map. Covers a portion of Penobscot Bay, Maine. The image is georeferenced to the surface of the earth and fit to the 'World Mercator' (WGS 84) projected coordinate system. All map collar information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as harbors, inlets, rocks, channels, points, coves, shoals, islands, and more. Includes also selected land features such as cities and towns, and buildings. Relief is shown by hachures; depths by soundings. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection. The entire Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England has been scanned and georeferenced as part of this selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the untitled, historic nautical chart: [A chart of Great Bluehill Bay, Penobscot River &c.] (sheet originally published in 1776). The map is [sheet 40] from the Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England, from surveys taken by Samuel Holland and published by J.F.W. Des Barres, 1781. Scale [ca. 1:50,000]. This layer is image 1 of 2 total images of the two sheet source map, representing the western portion of the map. Covers a portion of Penobscot Bay, including Belfast Bay and Penobscot River, Maine. The image is georeferenced to the surface of the earth and fit to the 'World Mercator' (WGS 84) projected coordinate system. All map collar information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as harbors, inlets, rocks, channels, points, coves, shoals, islands, and more. Includes also selected land features such as cities and towns, and buildings. Relief is shown by hachures; depths by soundings. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection. The entire Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England has been scanned and georeferenced as part of this selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the untitled, historic nautical chart: [A chart of Great Bluehill Bay, Penobscot River &c.] (sheet originally published in 1776). The map is [sheet 41] from the Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England, from surveys taken by Samuel Holland and published by J.F.W. Des Barres, 1781. Scale [ca. 1:50,000]. This layer is image 2 of 2 total images of the two sheet source map, representing the eastern portion of the map. Covers a portion of Penobscot Bay, including Blue Hill Bay, Deer Island, and Eggemoggin Reach, Maine. The image is georeferenced to the surface of the earth and fit to the 'World Mercator' (WGS 84) projected coordinate system. All map collar information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as harbors, inlets, rocks, channels, points, coves, shoals, islands, and more. Includes also selected land features such as cities and towns, and buildings. Relief is shown by hachures; depths by soundings. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection. The entire Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England has been scanned and georeferenced as part of this selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes indexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Relatively little is known about the distribution and seasonal movement patterns of shortnose sturgeon Acipenser brevirostrum and Atlantic sturgeon Acipenser oxyrinchus oxyrinchus occupying rivers in the northern part of their range. During 2006 and 2007, 40 shortnose sturgeon (66-113.4 cm fork length [FL]) and 8 Atlantic sturgeon (76.2-166.2 cm FL) were captured in the Penobscot River, Maine, implanted with acoustic transmitters, and monitored using an array of acoustic receivers in the Penobscot River estuary and Penobscot Bay. Shortnose sturgeon were present year round in the estuary and overwintered from fall (mid-October) to spring (mid-April) in the upper estuary. In early spring, all individuals moved downstream to the middle estuary. Over the course of the summer, many individuals moved upstream to approximately 2 km of the downstream-most dam (46 river kilometers [rkm] from the Penobscot River mouth [rkm 0]) by August. Most aggregated into an overwintering site (rkm 36.5) in mid-to late fall. As many as 50% of the tagged shortnose sturgeon moved into and out of the Penobscot River system during 2007, and 83% were subsequently detected by an acoustic array in the Kennebec River, located 150 km from the Penobscot River estuary. Atlantic sturgeon moved into the estuary from the ocean in the summer and concentrated into a 1.5-km reach. All Atlantic sturgeon moved to the ocean by fall, and two of these were detected in the Kennebec River. Although these behaviors are common for Atlantic sturgeon, regular coastal migrations of shortnose sturgeon have not been documented previously in this region. These results have important implications for future dam removals as well as for rangewide and river-specific shortnose sturgeon management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bayesian Belief Networks (BBNs) are emerging as valuable tools for investigating complex ecological problems. In a BBN, the important variables in a problem are identified and causal relationships are represented graphically. Underpinning this is the probabilistic framework in which variables can take on a finite range of mutually exclusive states. Associated with each variable is a conditional probability table (CPT), showing the probability of a variable attaining each of its possible states conditioned on all possible combinations of it parents. Whilst the variables (nodes) are connected, the CPT attached to each node can be quantified independently. This allows each variable to be populated with the best data available, including expert opinion, simulation results or observed data. It also allows the information to be easily updated as better data become available ----- ----- This paper reports on the process of developing a BBN to better understand the initial rapid growth phase (initiation) of a marine cyanobacterium, Lyngbya majuscula, in Moreton Bay, Queensland. Anecdotal evidence suggests that Lyngbya blooms in this region have increased in severity and extent over the past decade. Lyngbya has been associated with acute dermatitis and a range of other health problems in humans. Blooms have been linked to ecosystem degradation and have also damaged commercial and recreational fisheries. However, the causes of blooms are as yet poorly understood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research Background - Young people with negative experiences of mainstream education often display low levels of traditional academic achievement. These young people tend to display considerable cultural and social resources developed through their repeated experiences of adversity. Education research has a duty to provide these young people with opportunities to showcase, assess and translate their social and cultural resources into symbolic forms of capital. This creative work addresses the following research question. How can educators develop disengaged teenager's social and cultural capital through live music performances? Research Contribution - These live music performances afford the young participants opportunities to display their artistic, technical, social and cultural resources through a popular cultural format. In doing so they require education institutions to provide venues that demonstrate the skills these young people acquire through flexible learning environments. The new knowledge derived from this research focuses on the academic and self confidence benefits for disengaged young people using festival performances as authentic learning activities. Research Significance - This research is significant because it aims to maximise the number of tangible outcomes related to a school-based arts project. The young participants gained technical, artistic, social and commercial skills during this project. This performance led to more recording and opportunities to perform at other youth festivals in SE QLD. Individual performances were distributed and downloaded via creative commons licences at the Australian Creative Resource Archive. It also contributed to their certified qualifications and acted as pilot research data for two competitively funded ARC grants (DP0209421 & LP0883643)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jack's Bay (the architecturalisation of memory) is a key work of the author's exhibition Lightsite, which toured Western Australian galleries from February 2006 to November 2007. It is a five-minute-long exposure photographic image captured inside a purpose-built, room-sized pinhole camera which is demountable and does not have a floor. The work depicts octogenarian Jack Morris, who for forty years held the professional salmon fishing license in the hamlet of Bremer Bay, on the SE coast of Western Australia. The pinhole camera-room is sited within sand dunes new Jack's now demolished beachside camp. Three generations of Jack's descendents stand outside the room - from his daughter to his great grand children. The light from this exterior landscape is 'projected' inside the camera-room and illuminates the interior scene which includes that part of the sand dune upon which the floorless room is erected, along with Jack who is sitting inside. The image evokes the temporality of light. Here, light itself is portrayed as the primary medium through which we both perceive and describe landscape. In this way it is through the agency of light that we construct our connectivity to landscape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jack's Bay expands understandings of the role of photographic media in the representation of landscapes. It does so by combining architectural construction with B&W photographic processing techniques. A purpose-built room-sized camera obscura is first constructed over a portion of the landscape to be recorded. Photosensitive paper is applied to the interior wall surfaces and is exposed to the inverted light entering a small aperture. These photographs are subsequently developed within the camera itself and consequently 'suffer' embellishments and aberrations from the makeshift darkroom conditions. In this way the specificity of both the landscape and the event of its recording are registered in the final image. Many images were destroyed in the process. The idea of the work is to help the viewer reflect on the role media plays in our understanding of landscape and to thus question the means by which they themselves record and interpret landscape representations.