9 resultados para Pendrin
Resumo:
Iodine is a critical element involved in thyroid hormone synthesis. Its efflux into the follicular lumen is thought to occur, in part, through pendrin at the apical membrane of thyrocytes. This study attempted to investigate whether iodide administration affects SLC26A4 mRNA expression in rat thyroid and in PCCl3 cells. Rats and cells were treated or not with Nal from 30 min up to 48 h. One group was concomitantly treated with sodium perchlorate. SLC26A4 mRNA expression was also investigated in PCCl3 cells treated with actinomycin D prior to Nal treatment. Iodide administration significantly increased SLC26A4 mRNA content in both models. The simultaneous administration of Nal and perchlorate, as well as the treatment of PCCl3 cells with actinomycin D prevented this effect, indicating that intracellular iodide is essential for this event, which appears to be triggered by transcriptional mechanisms. These data show that intracellular iodide rapidly upregulates SLC26A4 mRNA expression. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Pendrin is an anion transporter encoded by the PDS/Pds gene. In humans, mutations in PDS cause the genetic disorder Pendred syndrome, which is associated with deafness and goiter. Previous studies have shown that this gene has a relatively restricted pattern of expression, with PDS/Pds mRNA detected only in the thyroid, inner ear, and kidney. The present study examined the distribution and function of pendrin in the mammalian kidney. Immunolocalization studies were performed using anti-pendrin polyclonal and monoclonal antibodies. Labeling was detected on the apical surface of a subpopulation of cells within the cortical collecting ducts (CCDs) that also express the H+-ATPase but not aquaporin-2, indicating that pendrin is present in intercalated cells of the CCD. Furthermore, pendrin was detected exclusively within the subpopulation of intercalated cells that express the H+-ATPase but not the anion exchanger 1 (AE1) and that are thought to mediate bicarbonate secretion. The same distribution of pendrin was observed in mouse, rat, and human kidney. However, pendrin was not detected in kidneys from a Pds-knockout mouse. Perfused CCD tubules isolated from alkali-loaded wild-type mice secreted bicarbonate, whereas tubules from alkali-loaded Pds-knockout mice failed to secrete bicarbonate. Together, these studies indicate that pendrin is an apical anion transporter in intercalated cells of CCDs and has an essential role in renal bicarbonate secretion.
Resumo:
Regulation of sodium balance is a critical factor in the maintenance of euvolemia, and dysregulation of renal sodium excretion results in disorders of altered intravascular volume, such as hypertension. The amiloride-sensitive epithelial sodium channel (ENaC) is thought to be the only mechanism for sodium transport in the cortical collecting duct (CCD) of the kidney. However, it has been found that much of the sodium absorption in the CCD is actually amiloride insensitive and sensitive to thiazide diuretics, which also block the Na-Cl cotransporter (NCC) located in the distal convoluted tubule. In this study, we have demonstrated the presence of electroneutral, amiloride-resistant, thiazide-sensitive, transepithelial NaCl absorption in mouse CCDs, which persists even with genetic disruption of ENaC. Furthermore, hydrochlorothiazide (HCTZ) increased excretion of Na+ and Cl- in mice devoid of the thiazide target NCC, suggesting that an additional mechanism might account for this effect. Studies on isolated CCDs suggested that the parallel action of the Na+-driven Cl-/HCO3- exchanger (NDCBE/SLC4A8) and the Na+-independent Cl-/HCO3- exchanger (pendrin/SLC26A4) accounted for the electroneutral thiazide-sensitive sodium transport. Furthermore, genetic ablation of SLC4A8 abolished thiazide-sensitive NaCl transport in the CCD. These studies establish what we believe to be a novel role for NDCBE in mediating substantial Na+ reabsorption in the CCD and suggest a role for this transporter in the regulation of fluid homeostasis in mice.
Resumo:
Since nitric oxide (NO) participates in the renal regulation of blood pressure, in part, by modulating transport of Na(+) and Cl(-) in the kidney, we asked whether NO regulates net Cl(-) flux (JCl) in the cortical collecting duct (CCD) and determined the transporter(s) that mediate NO-sensitive Cl(-) absorption. Cl(-) absorption was measured in CCDs perfused in vitro that were taken from aldosterone-treated mice. Administration of an NO donor (10 μM MAHMA NONOate) reduced JCl and transepithelial voltage (VT) both in the presence or absence of angiotensin II. However, reducing endogenous NO production by inhibiting NO synthase (100 μM N(G)-nitro-l-arginine methyl ester) increased JCl only in the presence of angiotensin II, suggesting that angiotensin II stimulates NO synthase activity. To determine the transport process that mediates NO-sensitive changes in JCl, we examined the effect of NO on JCl following either genetic ablation or chemical inhibition of transporters in the CCD. Since the application of hydrochlorothiazide (100 μM) or bafilomycin (5 nM) to the perfusate or ablation of the gene encoding pendrin did not alter NO-sensitive JCl, NO modulates JCl independent of the Na(+)-dependent Cl(-)/HCO3(-) exchanger (NDCBE, Slc4a8), the A cell apical plasma membrane H(+)-ATPase and pendrin. In contrast, both total and NO-sensitive JCl and VT were abolished with application of an epithelial Na(+) channel (ENaC) inhibitor (3 μM benzamil) to the perfusate. We conclude that NO reduces Cl(-) absorption in the CCD through a mechanism that is ENaC-dependent.
Resumo:
Objetivos: Determinar la prevalencia y los factores asociados con el desarrollo de hipotiroidismo autoinmune (HA) en una cohorte de pacientes con lupus eritematoso sistémico (LES), y analizar la información actual en cuanto a la prevalencia e impacto de la enfermedad tiroidea autoinmune y la autoinmunidad tiroidea en pacientes con LES. Métodos: Este fue un estudio realizado en dos pasos. Primero, un total de 376 pacientes con LES fueron evaluados sistemáticamente por la presencia de: 1) HA confirmado, 2) positividad para anticuerpos tiroperoxidasa/tiroglobulina (TPOAb/TgAb) sin hipotiroidismo, 3) hipotiroidismo no autoinmune, y 4) pacientes con LES sin hipotiroidismo ni positividad para TPOAb/TgAb. Se construyeron modelos multivariados y árboles de regresión y clasificación para analizar los datos. Segundo, la información actual fue evaluada a través de una revisión sistemática de la literatura (RLS). Se siguieron las guías PRISMA para la búsqueda en las bases de datos PubMed, Scopus, SciELO y Librería Virtual en Salud. Resultados: En nuestra cohorte, la prevalencia de HA confirmado fue de 12% (Grupo 1). Sin embargo, la frecuencia de positividad para TPOAb y TgAb fue de 21% y 10%, respectivamente (Grupo 2). Los pacientes con LES sin HA, hipotiroidismo no autoinmune ni positividad para TPOAb/TgAb constituyeron el 40% de la corhorte. Los pacientes con HA confirmada fueron estadísticamente significativo de mayor edad y tuvieron un inicio tardío de la enfermedad. El tabaquismo (ORA 6.93, IC 95% 1.98-28.54, p= 0.004), la presencia de Síndrome de Sjögren (SS) (ORA 23.2, IC 95% 1.89-359.53, p= 0.015) y la positividad para anticuerpos anti-péptido cíclico citrulinado (anti-CCP) (ORA 10.35, IC 95% 1.04-121.26, p= 0.047) se asociaron con la coexistencia de LES-HA, ajustado por género y duración de la enfermedad. El tabaquismo y el SS fueron confirmados como factores predictivos para LES-HA (AUC del modelo CART = 0.72). En la RSL, la prevalencia de ETA en LES varío entre 1% al 60%. Los factores asociados con esta poliautoinmunidad fueron el género femenino, edad avanzada, tabaquismo, positividad para algunos anticuerpos, SS y el compromiso articular y cutáneo. Conclusiones: La ETA es frecuente en pacientes con LES, y no afecta la severidad del LES. Los factores de riesgo identificados ayudarán a los clínicos en la búsqueda de ETA. Nuestros resultados deben estimular políticas para la suspensión del tabaquismo en pacientes con LES.
Resumo:
The functional versatility of the distal nephron is mainly due to the large cytological heterogeneity of the segment. Part of Na(+) uptake by distal tubules is dependent on Na(+)/H(+). exchanger 2 (NHE2), implicating a role of distal convoluted cells also in acid-base homeostasis. In addition, intercalated (IC) cells expressed in distal convoluted tubules, connecting tubules and collecting ducts are involved in the final regulation of acid-base excretion. IC cells regulate acid-base handling by 2 main transport proteins, a V-type H(+)-ATPase and a Cl/HCO(3)(-) exchanger, localized at different membrane domains. Type A IC cells are characterized by a luminal H(+)-ATPase in series with a basolateral Cl/HCO(3)(-) exchanger, the anion exchanger AE1. Type B IC cells mediate HCO(3)(-) secretion through the apical Cl(-)/HCO(3)(-) exchanger pendrin in series with a H(+)-ATPase at the basolateral membrane. Alternatively, H(+)/K(+)-ATPases have also been found in several distal tubule cells, particularly in type A and B IC cells. All of these mechanisms are finely regulated, and mutations of 1 or more proteins ultimately lead to expressive disorders of acid-base balance.
Resumo:
Iodide transport is necessary for the synthesis of thyroid hormones following accumulation in the follicular lumen out of thyroid cells, via channels unknown with the exception of pendrin. According to our hypothesis, TMEM16A could be the main molecular identity of the channel mediating iodide efflux in the thyroid gland. TMEM16A is the prior candidate for calcium-activated chloride conductance (CaCC). TMEM16A belongs to the TMEM16/anoctamin family comprising ten members (TMEM16A-K). Higher affinity of TMEM16A for iodide and predicted expression in the thyroid gland suggest its mediation of iodide efflux. The aim of this project was to identify the role of TMEM16A in iodide transport in the thyroid gland, by characterizing its molecular expression and functional properties. We demonstrated that TMEM16F, H, K transcripts are expressed in FRTL-5 thyroid cells, as well as TMEM16A, which is TSH-independent. Tumor tissue from human thyroid maintains TMEM16A expression. Functional in vivo experiments in FRTL-5, stably expressing YFP-H148Q/I152L fluorescent protein as a biosensor, showed that iodide efflux is stimulated by agonists of purinergic receptors with an order of potency of ATP>UTP>ADP (compatible with an involvement of P2Y purinergic receptors), and by agonists of adrenergic receptors (epinephrine, norepinephrine and phenylephrine). Iodide efflux was blocked by α-receptor antagonists prazosin and phentolamine, consistent with a role of α1 adrenergic receptors. Iodide efflux was specifically dependent on calcium mobilized from intracellular compartments and induced by the calcium ionophore ionomycin. CaCC blockers suppressed ionomycin-/ATP-/epinephrine-stimulated iodide efflux. Heterologous expression of TMEM16A in CHO K1 cells induced calcium-activated iodide fluxes. All these results support the hypothesis of the involvement of TMEM16A in calcium-dependent iodide efflux induced by receptor agonists in thyroid cells. TMEM16A may represent a new pharmacological target for thyroid cancer therapy, since its blockade may enhance the retention of radioiodide by tumour cells enhancing the efficacy of radioablative therapy.
Reciprocal electromechanical properties of rat prestin: The motor molecule from rat outer hair cells
Resumo:
Cochlear outer hair cells (OHCs) are responsible for the exquisite sensitivity, dynamic range, and frequency-resolving capacity of the mammalian hearing organ. These unique cells respond to an electrical stimulus with a cycle-by-cycle change in cell length that is mediated by molecular motors in the cells' basolateral membrane. Recent work identified prestin, a protein with similarity to pendrin-related anion transporters, as the OHC motor molecule. Here we show that heterologously expressed prestin from rat OHCs (rprestin) exhibits reciprocal electromechanical properties as known for the OHC motor protein. Upon electrical stimulation in the microchamber configuration, rprestin generates mechanical force with constant amplitude and phase up to a stimulus frequency of at least 20 kHz. Mechanical stimulation of rprestin in excised outside-out patches shifts the voltage dependence of the nonlinear capacitance characterizing the electrical properties of the molecule. The results indicate that rprestin is a molecular motor that displays reciprocal electromechanical properties over the entire frequency range relevant for mammalian hearing.
Resumo:
Cultured human choriocarcinoma cells of the BeWo line exhibited saturable accumulation of radioiodide. Inhibition by competing anions followed the affinity series perchlorate >= iodide >= thiocyanate, consistent with uptake through the thyroid iodide transporter, NIS, whose messenger RNA was found in BeWo cells, and whose protein was distributed towards the apical pole of the cells. Efflux obeyed first order kinetics and was inhibited by DIDS, an antagonist of anion exchangers including pendrin, whose messenger RNA was also present. In cultures where iodide uptake through NIS was blocked with excess perchlorate, radiolodide accumulation was stimulated by exposure to medium in which physiological anions were replaced by 2-morpholinoethanesulfonic acid (MES), consistent with the operation of an anion exchange mechanism taking up iodide. Chloride in the medium was more effective than sulfate at inhibiting this uptake, matching the ionic specificity of pendrin. These studies provide evidence that the trophoblast accumulates iodide through NIS and releases it to the fetal compartment through pendrin. (c) 2004 Elsevier Ltd. All rights reserved.