403 resultados para Penalized spline
Resumo:
Pspline uses xtmixed to fit a penalized spline regression and plots the smoothed function. Additional covariates can be specified to adjust the smooth and plot partial residuals.
Resumo:
This paper proposes a numerically simple routine for locally adaptive smoothing. The locally heterogeneous regression function is modelled as a penalized spline with a smoothly varying smoothing parameter modelled as another penalized spline. This is being formulated as hierarchical mixed model, with spline coe±cients following a normal distribution, which by itself has a smooth structure over the variances. The modelling exercise is in line with Baladandayuthapani, Mallick & Carroll (2005) or Crainiceanu, Ruppert & Carroll (2006). But in contrast to these papers Laplace's method is used for estimation based on the marginal likelihood. This is numerically simple and fast and provides satisfactory results quickly. We also extend the idea to spatial smoothing and smoothing in the presence of non normal response.
Resumo:
We develop fast fitting methods for generalized functional linear models. An undersmooth of the functional predictor is obtained by projecting on a large number of smooth eigenvectors and the coefficient function is estimated using penalized spline regression. Our method can be applied to many functional data designs including functions measured with and without error, sparsely or densely sampled. The methods also extend to the case of multiple functional predictors or functional predictors with a natural multilevel structure. Our approach can be implemented using standard mixed effects software and is computationally fast. Our methodology is motivated by a diffusion tensor imaging (DTI) study. The aim of this study is to analyze differences between various cerebral white matter tract property measurements of multiple sclerosis (MS) patients and controls. While the statistical developments proposed here were motivated by the DTI study, the methodology is designed and presented in generality and is applicable to many other areas of scientific research. An online appendix provides R implementations of all simulations.
Resumo:
Boston Harbor has had a history of poor water quality, including contamination by enteric pathogens. We conduct a statistical analysis of data collected by the Massachusetts Water Resources Authority (MWRA) between 1996 and 2002 to evaluate the effects of court-mandated improvements in sewage treatment. Motivated by the ineffectiveness of standard Poisson mixture models and their zero-inflated counterparts, we propose a new negative binomial model for time series of Enterococcus counts in Boston Harbor, where nonstationarity and autocorrelation are modeled using a nonparametric smooth function of time in the predictor. Without further restrictions, this function is not identifiable in the presence of time-dependent covariates; consequently we use a basis orthogonal to the space spanned by the covariates and use penalized quasi-likelihood (PQL) for estimation. We conclude that Enterococcus counts were greatly reduced near the Nut Island Treatment Plant (NITP) outfalls following the transfer of wastewaters from NITP to the Deer Island Treatment Plant (DITP) and that the transfer of wastewaters from Boston Harbor to the offshore diffusers in Massachusetts Bay reduced the Enterococcus counts near the DITP outfalls.
Resumo:
Numerous time series studies have provided strong evidence of an association between increased levels of ambient air pollution and increased levels of hospital admissions, typically at 0, 1, or 2 days after an air pollution episode. An important research aim is to extend existing statistical models so that a more detailed understanding of the time course of hospitalization after exposure to air pollution can be obtained. Information about this time course, combined with prior knowledge about biological mechanisms, could provide the basis for hypotheses concerning the mechanism by which air pollution causes disease. Previous studies have identified two important methodological questions: (1) How can we estimate the shape of the distributed lag between increased air pollution exposure and increased mortality or morbidity? and (2) How should we estimate the cumulative population health risk from short-term exposure to air pollution? Distributed lag models are appropriate tools for estimating air pollution health effects that may be spread over several days. However, estimation for distributed lag models in air pollution and health applications is hampered by the substantial noise in the data and the inherently weak signal that is the target of investigation. We introduce an hierarchical Bayesian distributed lag model that incorporates prior information about the time course of pollution effects and combines information across multiple locations. The model has a connection to penalized spline smoothing using a special type of penalty matrix. We apply the model to estimating the distributed lag between exposure to particulate matter air pollution and hospitalization for cardiovascular and respiratory disease using data from a large United States air pollution and hospitalization database of Medicare enrollees in 94 counties covering the years 1999-2002.
Resumo:
logitcprplot can be used after logistic regression for graphing a component-plus-residual plot (a.k.a. partial residual plot) for a given predictor, including a lowess, local polynomial, restricted cubic spline, fractional polynomial, penalized spline, regression spline, running line, or adaptive variable span running line smooth
Resumo:
When different markers are responsive to different aspects of a disease, combination of multiple markers could provide a better screening test for early detection. It is also resonable to assume that the risk of disease changes smoothly as the biomarker values change and the change in risk is monotone with respect to each biomarker. In this paper, we propose a boundary constrained tensor-product B-spline method to estimate the risk of disease by maximizing a penalized likelihood. To choose the optimal amount of smoothing, two scores are proposed which are extensions of the GCV score (O'Sullivan et al. (1986)) and the GACV score (Ziang and Wahba (1996)) to incorporate linear constraints. Simulation studies are carried out to investigate the performance of the proposed estimator and the selection scores. In addidtion, sensitivities and specificities based ona pproximate leave-one-out estimates are proposed to generate more realisitc ROC curves. Data from a pancreatic cancer study is used for illustration.
Resumo:
* Supported by the Army Research Office under grant DAAD-19-02-10059.
Resumo:
Thin plate spline finite element methods are used to fit a surface to an irregularly scattered dataset [S. Roberts, M. Hegland, and I. Altas. Approximation of a Thin Plate Spline Smoother using Continuous Piecewise Polynomial Functions. SIAM, 1:208--234, 2003]. The computational bottleneck for this algorithm is the solution of large, ill-conditioned systems of linear equations at each step of a generalised cross validation algorithm. Preconditioning techniques are investigated to accelerate the convergence of the solution of these systems using Krylov subspace methods. The preconditioners under consideration are block diagonal, block triangular and constraint preconditioners [M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta Numer., 14:1--137, 2005]. The effectiveness of each of these preconditioners is examined on a sample dataset taken from a known surface. From our numerical investigation, constraint preconditioners appear to provide improved convergence for this surface fitting problem compared to block preconditioners.
Resumo:
In this article, we prove convergence of the weakly penalized adaptive discontinuous Galerkin methods. Unlike other works, we derive the contraction property for various discontinuous Galerkin methods only assuming the stabilizing parameters are large enough to stabilize the method. A central idea in the analysis is to construct an auxiliary solution from the discontinuous Galerkin solution by a simple post processing. Based on the auxiliary solution, we define the adaptive algorithm which guides to the convergence of adaptive discontinuous Galerkin methods.
B-Spline potential function for maximum a-posteriori image reconstruction in fluorescence microscopy
Resumo:
An iterative image reconstruction technique employing B-Spline potential function in a Bayesian framework is proposed for fluorescence microscopy images. B-splines are piecewise polynomials with smooth transition, compact support and are the shortest polynomial splines. Incorporation of the B-spline potential function in the maximum-a-posteriori reconstruction technique resulted in improved contrast, enhanced resolution and substantial background reduction. The proposed technique is validated on simulated data as well as on the images acquired from fluorescence microscopes (widefield, confocal laser scanning fluorescence and super-resolution 4Pi microscopy). A comparative study of the proposed technique with the state-of-art maximum likelihood (ML) and maximum-a-posteriori (MAP) with quadratic potential function shows its superiority over the others. B-Spline MAP technique can find applications in several imaging modalities of fluorescence microscopy like selective plane illumination microscopy, localization microscopy and STED. (C) 2015 Author(s).
Resumo:
The stability of a soil slope is usually analyzed by limit equilibrium methods, in which the identification of the critical slip surface is of principal importance. In this study the spline curve in conjunction with a genetic algorithm is used to search the critical slip surface, and Spencer's method is employed to calculate the factor of safety. Three examples are presented to illustrate the reliability and efficiency of the method. Slip surfaces defined by a series of straight lines are compared with those defined by spline curves, and the results indicate that use of spline curves renders better results for a given number of slip surface nodal points comparing with the approximation using straight line segments.