124 resultados para Pebbles
Resumo:
Coal pebbles found in 1994 in the Greham Bell Island (Franz Josef Land Archipelago) are made up of Barzas-type cuticular liptobiolith. The coal belongs to the initial stage of catagenesis and is characterized by high content of cutinite (up to 70%) with very low reflectance (Ro = 0.1%). Maceration products show some tegillate elements of Arthropoda and individual Devonian spores. It is supposed that plant cuticle and Arthropoda exocuticle are present in this coal. Obtained data suggest presence of Paleozoic rocks in the sedimentary sequence, although they are not yet recovered. These data complement available information on distribution of specific Devonian coals and allow to have a new insight into zoogenic material involved in coal formation.
Resumo:
At all DSDP Leg 56 drilling sites, exotic pebbles occur commonly, throughout the cores. Chips of carbonate nodules occur only at Site 434 on the lower inner trench wall. Both exotic pebbles and carbonate nodule chips sometimes tend to be concentrated at particular levels of cores. Exotic pebbles are generally well rounded and consist of various rock types, such as dacite, andesite, basalt, tuff, gabbro, granodiorite, metaquartzite, biotite hornfels, lithic wacke, mudstone, etc., of which dacite occurs commonly at all the sites. Almost all pebbles at Site 436 and most at Sites 434 and 435 may have been rafted by ice. Some at the latter sites may have been derived by down-slope slumping. Carbonate nodules consist of microcrystalline dolomite, manganoan calcite, and siderite; CaCO3 content ranges from 22 to 65 per cent. They are also generally characterized by a high content of P2O5. The nodules are commonly rich in diatom remains, some of which indicate that the nodules are autochthonous. Some nodules contain abundant glass shards, with a modal refractive index of 1.499, almost identical to shards in the surrounding mud and ooze. These facts suggest that the carbonate nodules may have been formed diagenetically, in situ. This may throw light on problems of the formation of carbonate nodules in ancient "geosynclinal" sediments. It is also very important to point out that these carbonate nodules were formed within sediment deposited well below the CCD.
Resumo:
Pebbles (>10 mm) sampled from three drill sites on the continental rise west of the Antarctic Peninsula during Ocean Drilling Program Leg 178 were classified by shape and roundness. In addition, pebble lithology and surface texture were visually identified. To increase the pebble sample number to 331, three sites that were drilled 94 to 213 km from the continental shelf edge were integrated into the data set using magnetostratigraphy for core correlation. Pebbles were compared in three groups defined by the same stratigraphic intervals at each site: 3.1-2.2 Ma (late Pliocene), 2.2-0.76 Ma (late Pliocene-late Pleistocene), and 0.76 Ma to the Holocene. Pebble lithologies originate from sources on the Antarctic Peninsula margin. Most pebbles are metamorphic and sedimentary pebbles are rare (<6%), whereas mafic volcanic and intrusive igneous lithologies increase in abundance upsection. Pebbles from 3.1 to 0.76 Ma, plotted on sphericity-roundness diagrams, indicate original transport as basal and supraglacial/englacial debris. Pebbles are abundant and of diverse lithology. From 0.76 Ma to the present, the number of pebbles is low and their shape characteristics indicate they originated as basal debris. Observed changes in ice-rafted pebbles can be explained by growth of an ice sheet and inundation of the Antarctic Peninsula topography by ice ~0.76 Ma. Prior to this, outlet and valley glaciers transported debris at high levels within and at the base of the ice. The mass accumulation rate of sand fluctuates and includes rounded quartz grains. Ice-sheet growth may have been accompanied by overall cooling from subpolar to polar glacial regimes, which halted meltwater production and enhanced the growth of ice shelves, which consequently reduced sediment supply to icebergs.
Resumo:
Added title page, engraved