950 resultados para Pearl River estuary
Resumo:
The acid-volatile sulfide (AVS), simultaneously extracted metals (SEM), total metals, and chemical partitioning in the sediment cores of the Pearl River Estuary (PRE) were studied. The concentrations of total metals, AVS, and SEM in the sediment cores were generally low in the river outlet area, increased along the seaward direction, and decreased again at the seaward boundary of the estuary. The amounts of AVS were generally greater in deeper sediments than in surface sediments. SEM/AVS was > 1 in the surface sediments and in the river outlet cores. The ratio was < 1 in the sediments down the profiles, suggesting that AVS might play a major role in binding heavy metals in the deep sediments of the PRE. The SEM may contain different chemical forms of trace metals in the sediments, depending on the metal reaction with 1 M cold HCl in the AVS procedure compared with the results of the sequential chemical extraction. The SEM/AVS ratio prediction may overestimate trace metal availability even in the sediments with high AVS concentrations. (c) 2004 Elsevier Inc. All rights reserved.
Resumo:
Salt water intrusion occurred frequently during dry season in Modaomen waterway of the Pearl River Estuary. With the development of region's economy and urbanization, the salt tides affect the region's water supply more and more seriously in recent years. Regulation and allocation of freshwater resources of the upper rivers of the estuary to suppress the salt tides is becoming important measures for ensuring the water supply security of the region in dry season. The observation data analysis showed that the flow value at the Wuzhou hydrometric station on the upper Xijiang river had a good correlation with the salinity in Modaomen estuary. Thus the flow rate of Wuzhou has been used as a control variable for suppression of salt tides in Modaomen estuary. However, the runoff at Wuzhou mainly comes from the discharge of Longtan reservoir on the upper reaches of Xijiang river and the runoff in the interval open valley between Longtan and Wuzhou sections. As the long distance and many tributaries as well as the large non-controlled watershed between this two sections, the reservoir water scheduling has a need for reasonable considering of interaction between the reservoir regulating discharge and the runoff process of the interval open watershed while the deployment of suppression flow at Wuzhou requires longer lasting time and high precision for the salt tide cycles. For this purpose, this study established a runoff model for Longtan - Wuzhou interval drainage area and by model calculations and observation data analysis, helped to understand the response patterns of the flow rate at Wuzhou to the water discharge of Longtan under the interval water basin runoff participating conditions. On this basis, further discussions were taken on prediction methods of Longtan reservoir discharge scheduling scheme for saline intrusion suppression and provided scientific and typical implementation programs for effective suppression flow process at the Wuzhou section.
Resumo:
Chang-Fu Wang, Xian-Qiu Ren, and Run-Lin Xu (2010) Composition, abundance, and diversity of the Peracarida on different vegetation types in the Qi'ao-Dan'gan Island Mangrove Nature Reserve on Qi'ao Island in the Pearl River estuary, China. Zoological Studies 49(5): 608-615. Almost nothing is known about the Peracarida in the Pearl River estuary. This is the 1st report to study the composition, abundance, and diversity of the Peracarida in the Qi'ao-Dan'gan I. Mangrove Nature Reserve on Qi'ao I., in the Pearl River estuary, southern China. Bimonthly samplings were carried out in 3 representative vegetation types (mangrove arbor, emergent plants, and seaweed) for 2 yr. Using a Peterson grab, 1940 individuals (id.) were collected in total, including 11 species of 6 genera, 5 families, and 3 orders (Amphipoda, Isopoda, and Tanaidacean). Discapseudes mackiei Bamber 1997 was the dominant species with the highest density of 1,432 incl./m(2). The effect of temperature on the abundance of Peracarida was significant (p < 0.01), and the optimum temperature was 22-23 degrees C in both the mangrove arbor and seaweed. The results showed that the abundance of the Peracarida was higher in the mangrove arbor, while the diversity, especially Amphipoda diversity, was higher in the seaweed. In contrast, emergent plants provided no suitable habitats for the Peracarida. http://zoolstud.sinica.edu.tw/Journals/49.5/608.pdf
Resumo:
Field measurements of salinity, wind and river discharge and numerical simulations of hydrodynamics from 1978 to 1984 are used to investigate the dynamics of the buoyant plume off the Pearl River Estuary (PRE), China during summer. The studies have shown that there are four major horizontal buoyant plume types in summer: Offshore Bulge Spreading (Type I), West Alongshore Spreading (Type II), East Offshore Spreading (Type III), and Symmetrical Alongshore Spreading (Type IV). River mouth conditions, winds and ambient coastal currents have inter-influences to the transport processes of the buoyant plume. It is found that all of the four types are surface-advected plumes by analysing the vertical characteristic of the plumes, and the monthly variations of the river discharge affect the plume size dominantly. The correlation coefficient between the PRE plume size and the river discharge reaches 0.85 during the high river discharge season. A wind strength index has been introduced to examine the wind effect. It is confirmed that winds play a significant role in forming the plume morphology. The alongshore wind stress and the coastal currents determine the alongshore plume spreading. The impact of the ambient currents such as Dongsha Current and South China Sea (SCS) Warm Current on the plume off the shelf has also assessed. The present study has demonstrated that both the river discharge and wind conditions affect the plume evolution.
Resumo:
The Princeton Ocean Model is used to study the circulation features in the Pearl River Estuary and their responses to tide, river discharge, wind, and heat flux in the winter dry and summer wet seasons. The model has an orthogonal curvilinear grid in the horizontal plane with variable spacing from 0.5 km in the estuary to 1 km on the shelf and 15 sigma levels in the vertical direction. The initial conditions and the subtidal open boundary forcing are obtained from an associated larger-scale model of the northern South China Sea. Buoyancy forcing uses the climatological monthly heat fluxes and river discharges, and both the climatological monthly wind and the realistic wind are used in the sensitivity experiments. The tidal forcing is represented by sinusoidal functions with the observed amplitudes and phases. In this paper, the simulated tide is first examined. The simulated seasonal distributions of the salinity, as well as the temporal variations of the salinity and velocity over a tidal cycle are described and then compared with the in situ survey data from July 1999 and January 2000. The model successfully reproduces the main hydrodynamic processes, such as the stratification, mixing, frontal dynamics, summer upwelling, two-layer gravitational circulation, etc., and the distributions of hydrodynamic parameters in the Pearl River Estuary and coastal waters for both the winter and the summer season.
Resumo:
The Princeton Ocean Model is used to study the circulation in the Pear River Estuary (PRE) and the adjacent coastal waters in the winter and summer seasons. Wong et al. [2003] compares the simulation results with the in situ measurements collected during the Pearl River Estuary Pollution Project (PREPP). In this paper, sensitivity experiments are carried out to examine the plume and the associated frontal dynamics in response to seasonal discharges and monsoon winds. During the winter, convergence between the seaward spreading plume water and the saline coastal water sets up a salinity front that aligns from the northeast to the southwest inside the PRE. During the summer the plume water fills the PRE at the surface and spreads eastward in the coastal waters in response to the prevailing southwesterly monsoon. The overall alignment of the plume is from the northwest to the southeast. The subsurface front is similar to that in the winter and summer except that the summer front is closer to the mouth and the winter front closer to the head of the estuary. Inside the PRE, bottom flows are always toward the head of the estuary, attributed to the density gradient associated with the plume front. In contrast, bottom flows in the shelf change from offshore in winter to onshore in summer, reflecting respectively the wintertime downwelling and summertime upwelling. Wind also plays an essential role in controlling the plume at the surface. An easterly wind drives the plume westward regardless winter or summer. The eastward spreading of the plume during the summer can be attributed to the southerly component of the wind. On the other hand, the surface area of the plume is positively proportional to the amount of discharge.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Carte de l'entrée de la riviere de Canton : dressée sur les observations les plus récentes, par N.B., Ingr. ordre. de la Marine ; J.V. Schley direx. It was published by Pierre de Hondt in 1749. Scale [ca. 1:475,000]. Covers the Zhujiang Kou region, Guangdong Sheng, China. Map in French and Dutch.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Asia North Lambert Conformal Conic coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, cities and other human settlements, selected buildings and fortification, shoreline features, and more. Relief shown pictorially.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Carte des isles qui sont a l'embouchure de la riviere de Canton : dressée sur les observations des navigateurs, par N.B., Ingr. ordre. de la Marine ; J.V. Schley, direx. It was published by Pierre de Hondt in 1749. Scale [ca. 1:500,000]. Covers the Zhujiang Kou region, Guangdong Sheng, China. Map in French and Dutch. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Asia North Lambert Conformal Conic coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, cities and other human settlements, selected buildings and fortification, shoreline features, and more. Relief shown pictorially.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
There is excess nitrate (NO3) in the Pearl River coastal plume in the southern waters of Hong Kong in summer. We hypothesize that phosphorus (P) limitation controls the utilization of excess NO3 due to the high N:P ratio in the Pearl River. To test this hypothesis, we conducted two 1-day cruises on July 13 and 19, 2000 to examine the response of the phytoplankton to P additions with respect to changes in biomass, uptake of nutrients and nutrient uptake ratios using a batch incubation of natural water samples collected from the Pearl River estuary and adjacent coastal waters. At a station (E1, salinity =5) in the Pearl River estuary, the N/P ratio at the surface was 46:1, (64 muM DIN: 1.3 muM PO4) and decreased to 24:1 (12 muM DIN: 0.5 muM PO4) downstream at a station (Stn 26, salinity =26) in the coastal plume south of Hong Kong. Without a P addition, NO3 in the water samples collected at E1 could not be depleted during a 9 day incubation (similar to20 muM NO3 remaining). With a P addition, NO3 disappeared completely on day 6 with the depletion of the added PO4 (2-3 muM). This was also true for a station, E4 (salinity= 15) further downstream, but within the estuary. At Stn 26, in the coastal plume south of Hong Kong, NO3 (similar to11.5 muM) was eventually depleted without the addition of PO4, but it took 8 days instead of 5 days for Stn E4. The uptake ratio of dissolved inorganic nitrogen (DIN) to PO4, without a P addition was 51:1, 43:1 and 46:1 for Stns E1, E4 and 26, respectively. With a P addition, the DIN/PO4 uptake ratio decreased to 20:1, 14:1 and 12:1, respectively, for the 3 stations. These results clearly indicate potential P limitation to utilization of NO3 in the Pearl River estuary, resulting in excess NO3 in waters of the coastal plume downstream of the estuary, some of which would eventually be transported offshore. High uptake ratios of N:P without a P addition (43N:1P) suggest that phytoplankton have a nitrogen uptake capacity in excess of the Redfield ratio of 16N: 1P by 2.5-3 times. The value of 2.5-3 times was likely a maximum that should have contained a contribution of P released from desorption of P from sediments or from regeneration by zooplankton grazing and bacterial activity during the incubation of natural water samples. Without a P addition, however, phytoplankton biomass did not increase. This means that P turnover rates or regeneration may allow phytoplankton to take up additional N in excess of the Redfield ratio and store it, but without increasing the algal biomass. Therefore, high ambient N:P ratios in excess of the Redfield ratio do indicate potential P limitation to phytoplankton biomass in this estuarine coastal ecosystem. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The multi-criteria decision making methods, Preference METHods for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA), and the two-way Positive Matrix Factorization (PMF) receptor model were applied to airborne fine particle compositional data collected at three sites in Hong Kong during two monitoring campaigns held from November 2000 to October 2001 and November 2004 to October 2005. PROMETHEE/GAIA indicated that the three sites were worse during the later monitoring campaign, and that the order of the air quality at the sites during each campaign was: rural site > urban site > roadside site. The PMF analysis on the other hand, identified 6 common sources at all of the sites (diesel vehicle, fresh sea salt, secondary sulphate, soil, aged sea salt and oil combustion) which accounted for approximately 68.8 ± 8.7% of the fine particle mass at the sites. In addition, road dust, gasoline vehicle, biomass burning, secondary nitrate, and metal processing were identified at some of the sites. Secondary sulphate was found to be the highest contributor to the fine particle mass at the rural and urban sites with vehicle emission as a high contributor to the roadside site. The PMF results are broadly similar to those obtained in a previous analysis by PCA/APCS. However, the PMF analysis resolved more factors at each site than the PCA/APCS. In addition, the study demonstrated that combined results from multi-criteria decision making analysis and receptor modelling can provide more detailed information that can be used to formulate the scientific basis for mitigating air pollution in the region.