955 resultados para Peanut Hypersensitivity
Resumo:
BACKGROUND: Positive skin prick tests (SPT) for food allergens and specific IgE (sIgE) in serum indicate sensitization but do not enable distinction between sensitized but tolerant and clinically allergic patients. OBJECTIVE: Herein, we evaluate the clinical relevance of basophil activation tests (BATs) for peanut or egg allergy diagnosis. METHODS: Thirty-two peanut-allergic, 14 peanut-sensitized (sIgE(+) and/or SPT(+) to peanuts) but tolerant children and 29 controls with no history of an adverse reaction to peanuts were included. Similarly, 31 egg-allergic, 14 egg-sensitized children (sIgE(+) and/or SPT(+) to egg white) and 22 controls were studied. Flow cytometric analysis of CD63 expression or CD203c upregulation on basophils and the production of leukotrienes (LT) were performed in response to an in vitro crude peanut extract or ovalbumin (OVA) challenge. RESULTS: After in vitro peanut challenge, the basophils from peanut-allergic children showed significantly higher levels of activation than those from controls (P<0.001). After OVA challenge, a similar distinction (P<0.001) was observed between egg-allergics and controls. Interestingly, the majority of egg- or peanut-sensitized children failed to activate basophils, respectively, in response to OVA and peanut challenge. The sensitivity of the CD63, CD203c and LT assay was 86.7%, 89.5% and 76.0% with a specificity of 94.1%, 97.1% and 94.6% for peanut allergy diagnosis. The corresponding performances of BATs applied to egg allergy diagnosis were 88.9%, 62.5% and 77.8% for the sensitivity and 100%, 96.4% and 96.4% for the specificity. CONCLUSION: Neither conventional tests nor BATs are sensitive and specific enough to predict food allergy accurately. However, BATs may helpfully complete conventional tests, especially SPT, allowing improved discrimination between allergic and non-allergic individuals.
Resumo:
This study investigated the preparation of methyl ester (Biodiesel) from peanut oil by transesterification method and its effect on DI diesel engine. Two parameters were measured during the engine operation: one is engine performance (brake thermal efficiency and brake specific fuel consumption), and the other is the exhaust emissions (NOx and CO). The result showed that, when compared with neat diesel fuel, the brake thermal efficiency of biodiesel blend was almost similar or a slight lower. However, brake specific fuel consumption (bsfc) was a little higher than neat diesel. CO was lower and NOx was little higher with biodiesel blend than that of diesel. The engine performance for B10 and B20 was very similar. At medium and high load conditions the engine emissions for B10 and B20 has no significant variation. Hence, B20 can safely be used in diesel engine without any significant penalty in engine performance and emissions.
Resumo:
Two workers were hospitalised with similar symptoms. Information was gathered from patients, doctors, colleagues and food seller. Laboratory tests were undertaken on remaining food and vomits. We identified the source food and toxin responsible for this outbreak, and subsequently helped doctors to treat these patients. The intake was estimated to be over the fatal limit but both were fully recovered after treatment. Abstract in Chinese 2001年11月20日,寿光市植物油厂的2名装卸工人因食用花生米引起亚硝酸盐急性中毒,现报告如下。 1 中毒经过 11月20日下午,市植物油厂装卸工人秦×下班后,到本厂职工食堂买了馒头、大米稀饭和少许咸菜,然后到厂外买了1瓶白酒,又到个体菜摊李×处买了2元钱的煮花生米,约400g。17:40与同事江×一同在宿舍内饮酒吃饭,其中花生米大部分被秦×吃掉,江×吃得少。18:30左右秦×在装卸过程中出现双腿发软、恶心、呕吐、呼吸困难、视物模糊,江×随后也出现类似症状,2人被迅速送往寿光市人民医院进行抢救。到医院时已进入昏迷状态,查体可见全身皮肤粘膜青紫、手指脚趾发黑,经吸氧并心电监护、应用美兰静推后,江×症状减轻,于次日出院;秦×因中毒严重,于次日脱离危险,11月23日痊愈出院。……
Resumo:
Antigen selection of B cells within the germinal center reaction generally leads to the accumulation of replacement mutations in the complementarity-determining regions (CDRs) of immunoglobulin genes. Studies of mutations in IgE-associated VDJ gene sequences have cast doubt on the role of antigen selection in the evolution of the human IgE response, and it may be that selection for high affinity antibodies is a feature of some but not all allergic diseases. The severity of IgE-mediated anaphylaxis is such that it could result from higher affinity IgE antibodies. We therefore investigated IGHV mutations in IgE-associated sequences derived from ten individuals with a history of anaphylactic reactions to bee or wasp venom or peanut allergens. IgG sequences, which more certainly experience antigen selection, served as a control dataset. A total of 6025 unique IgE and 5396 unique IgG sequences were generated using high throughput 454 pyrosequencing. The proportion of replacement mutations seen in the CDRs of the IgG dataset was significantly higher than that of the IgE dataset, and the IgE sequences showed little evidence of antigen selection. To exclude the possibility that 454 errors had compromised analysis, rigorous filtering of the datasets led to datasets of 90 core IgE sequences and 411 IgG sequences. These sequences were present as both forward and reverse reads, and so were most unlikely to include sequencing errors. The filtered datasets confirmed that antigen selection plays a greater role in the evolution of IgG sequences than of IgE sequences derived from the study participants.
Resumo:
Peanut (Arachis hypogaea) seed lectin, PNA is widely used to identify tumor specific antigen (T-antigen), Gal beta 1-3GalNAc on the eukaryotic cell surface. The functional amino acid coding region of a cDNA clone, pBSH-PN was PCR amplified and cloned downstream of the polyhedrin promoter in the Autographa californica nucleopolyhedrovirus (AcNPV) based transfer vector pVL1393. Co-transfection of Spodoptera frugiperda cells (Sf9) with the transfer vector, pAcPNA and AcRP6 (a recombinant AcNPV having B-gal downstream of the polyhedrin promoter) DNAs produced a recombinant virus, AcPNA which expresses PNA. Infection of suspension culture of Sf9 cells with plaque purified AcPNA produced as much as 9.8 mg PNA per liter (2.0 x 10(6) cells/ml) of serum-free medium. Intracellularly expressed protein (re-PNA) was purified to apparent homogeneity by affinity chromatography using ECD-Sepharose. Polyclonal antibodies against natural PNA (n-PNA) crossreacted with re-PNA. The subunit molecular weight (30 kDa), hemagglutination activity, and carbohydrate specificity of re-PNA were found to be identical to that of n-PNA, thus confirming the abundant production of a functionally active protein in the baculovirus expression system.
Resumo:
Peanut (Arachis hypogaea L.) lines exhibiting high levels of resistance to peanut stripe virus (PStV) were obtained following microprojectile bombardment of embryogenic callus derived from mature seeds. Fertile plants of the commercial cultivars Gajah and NC7 were regenerated following co-bombardmentwith the hygromycin resistance gene and one of two forms of the PStV coat protein (CP) gene, an untranslatable, full length sequence (CP2) or a translatable gene encoding a CP with an N-terminal truncation (CP4). High level resistance to PStV was observed for both transgenes when plants were challenged with the homologous virus isolate. The mechanism of resistance appears to be RNA-mediated, since plants carrying either the untranslatable CP2 or CP4 had no detectable protein expression, but were resistant or immune (no virus replication). Furthermore, highly resistant, but not susceptible CP2 T0 plants contained transgene-specific small RNAs. These plants now provide important germplasm for peanut breeding, particularly in countries where PStV is endemic and poses a major constraint to peanut production.
Resumo:
Rabbits and guinea pigs were immunized with functionalized aspirin-protein conjugates prepared by coupling 5-N-Succinylamino aspirin to BSA and BGG using a water soluble carbodiimide (EDC). Two populations of antibodies, one specific to functionalized aspirin and the other exclusively specific to salicylic acid were detected. These antibodies were fractionated and separated on affinity polymers suitably prepared with 5-N-succinylamino salicylic acid and 5-N-succinylamino-2-ethoxy benzoic acid as the ligands. The isolated and purified antibodies were electrophoretically homogeneous. The physico chemical interactions between the antibodies and the respective haptens were studied by radio-immunoassay, equilibrium dialysis and fluorescence quenching techniques.
Resumo:
Large larval populations of the scarabaeid beetle Heteronyx piceus Blanchard that occur under peanuts, but not maize, in the South Burnett region of Australia are the result of a high rate and prolonged period of egg production by females feeding on peanut foliage. Heteronyx piceus is a relatively sedentary species and movement of females between adjacent fields is low. Populations of H. piceus varied markedly with landscape position. High larval populations are more likely (1 in 4 chance) to be encountered on the ‘scrub’ soils in the upper parts of the landscape than in the ‘forest’ soils in the lower half (1 in 20 chance), indicating that soil type/landscape position is a key risk factor in assessing the need for management intervention. The studies indicate that, because of the species' sedentary nature, the most meaningful population entity for management of H. piceus is the individual field, rather than the whole-farm or the region. The implications of this population ecology for management of the pest are discussed in relation to control strategies.
Resumo:
Two pot experiments were conducted in two different seasons at the University of Agricultural Science, Bangalore, India, to study (a) the relationship between chlorophyll concentration (by measuring the leaf light-transmittance characteristics using a SPAD metre) and transpiration efficiency (TE) and (b) the effect of leaf N on chlorophyll and TE relationship in peanut. In Experiment (Expt) I, six peanut genotypes with wide genetic variation for the specific leaf area (SLA) were used. In Expt II, three non-nodulating isogenic lines were used to study the effect of N levels on leaf chlorophyll concentration–TE relationship without potential confounding effects in biological nitrogen fixation. Leaf N was manipulated by applying N fertiliser in Expt II. Chlorophyll concentration, TE (g dry matter kg−1 of H2O transpired, measured using gravimetric method), specific leaf nitrogen (g N m−2, SLN), SLA (cm2 g−1), carbon isotope composition (Δ13C) were determined in the leaves sampled during the treatment period (35–55 days after sowing) in the two experiments. Results showed that the leaf chlorophyll concentration expressed as soil plant analytical development (SPAD) chlorophyll metre reading (SCMR) varied significantly among genotypes in Expt I and as a result of N application in Expt II. Changes in leaf N levels were strongly associated with changes in SCMR, TE and Δ13C. In both the experiments, a significant positive relationship between SCMR and TE with similar slopes but differing intercepts was noticed. However, correction of TE for seasonal differences in vapour pressure deficit (VPD) between the two experiments resulted in a single and stronger relationship between SCMR and TE. There was a significant inverse relationship between SCMR and Δ13C, suggesting a close linkage between chlorophyll concentration and Δ13C in peanut. This study provides the first evidence for a significant positive relationship between TE and leaf chlorophyll concentration in peanut. The study also describes the effect of growing environment on the relationships among SLA, SLN and SCMR.
Resumo:
An optical peanut yield monitor was developed, fabricated, and field-tested. The overall system includes an optical mass-flow sensor, a GPS receiver, and a data acquisition system. The concept for the mass-flow sensor is based on that of the cotton yield-monitor sensor developed previously by Thomasson and Sui (2000). A modified version of the sensor was designed to be specific to peanut mass-flow measurement. Field testing of the peanut yield monitor was conducted in Australia during the May 2003 harvest. After subsequent minor modifications, the system was more extensively tested in Mississippi in October of 2003 and November of 2004. Test results showed that the output of the peanut mass-flow sensor was very strongly correlated with the harvested load weight, and the system's performance was stable and reliable during the tests.
Resumo:
Measurement or accurate simulation of soil temperature is important for improved understanding and management of peanuts (Arachis hypogaea L.), due to their geocarpic habit. A module of the Agricultural Production Systems Simulator Model (APSIM), APSIM-soiltemp, which uses input of ambient temperature, rainfall and solar radiation in conjunction with other APSIM modules, was evaluated for its ability to simulate surface 5 cm soil temperature in 35 peanut on-farm trials conducted between 2001 and 2005 in the Burnett region (25°36'S to 26°41'S, 151°39'E to 151°53'E). Soil temperature simulated by the APSIM-soiltemp module, from 30 days after sowing until maturity, closely matched the measured values (R2 ≥ 0.80)in the first three seasons (2001-04). However, a slightly poorer relationship (R2 = 0.55) between the observed and the simulated temperatures was observed in 2004-05, when the crop was severely water stressed. Nevertheless, over all the four seasons, which were characterised by a range of ambient temperature, leaf area index, radiation and soil water, each of which was found to have significant effects on soil temperature, a close 1:1 relationship (R2 = 0.85) between measured and simulated soil temperatures was observed. Therefore, the pod zone soil temperature simulated by the module can be generally relied on in place of measured input of soil temperature in APSIM applications, such as quantifying climatic risk of aflatoxin accumulation.
Resumo:
Drought during the pre-flowering stage can increase yield of peanut. There is limited information on genotypic variation for tolerance to and recovery from pre-flowering drought (PFD) and more importantly the physiological traits underlying genotypic variation. The objectives of this study were to determine the effects of moisture stress during the pre-flowering phase on pod yield and to understand some of the physiological responses underlying genotypic variation in response to and recovery from PFD. A glasshouse and field experiments were conducted at Khon Kaen University, Thailand. The glasshouse experiment was a randomized complete block design consisting of two watering regimes, i.e. fully-irrigated control and 1/3 available soil water from emergence to 40 days after emergence followed by adequate water supply, and 12 peanut genotypes. The field experiment was a split-plot design with two watering regimes as main-plots, and 12 peanut genotypes as sub-plots. Measurements of N-2 fixation, leaf area (LA) were made in both experiments. In addition, root growth was measured in the glasshouse experiment. Imposition of PFD followed by recovery resulted in an average increase in yield of 24 % (range from 10 % to 57 %) and 12 % (range from 2 % to 51 %) in the field and glasshouse experiments, respectively. Significant genotypic variation for N-2 fixation, LA and root growth was also observed after recovery. The study revealed that recovery growth following release of PFD had a stronger influence on final yield than tolerance to water deficits during the PFD. A combination of N-2 fixation, LA and root growth accounted for a major portion of the genotypic variation in yield (r = 0.68-0.93) suggesting that these traits could be used as selection criteria for identifying genotypes with rapid recovery from PFD. A combined analysis of glasshouse and field experiments showed that LA and N-2 fixation during the recovery had low genotype x environment interaction indicating potential for using these traits for selecting genotypes in peanut improvement programs.
Resumo:
Monitoring aflatoxin and developing improved peanut drying practices, cadmium management and web based irrigation decision support systems.
Resumo:
Commercialisation and adoption of remote sensing and GIS technologies for improved production forecasting, productivity, quality and paddock- to- plate tracking within the Australian Peanut Industry.