926 resultados para Pea enation mosaic virus 1 (PEMV1)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The P0 protein of poleroviruses and P1 protein of sobemoviruses suppress the plant's RNA silencing machinery. Here we identified a silencing suppressor protein (SSP), P0PE, in the Enamovirus Pea enation mosaic virus-1 (PEMV-1) and showed that it and the P0s of poleroviruses Potato leaf roll virus and Cereal yellow dwarf virus have strong local and systemic SSP activity, while the P1 of Sobemovirus Southern bean mosaic virus supresses systemic silencing. The nuclear localized P0PE has no discernable sequence conservation with known SSPs, but proved to be a strong suppressor of local silencing and a moderate suppressor of systemic silencing. Like the P0s from poleroviruses, P0PE destabilizes AGO1 and this action is mediated by an F-box-like domain. Therefore, despite the lack of any sequence similarity, the poleroviral and enamoviral SSPs have a conserved mode of action upon the RNA silencing machinery. © 2012 Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Pea encodes eukaryotic translation initiation factor eIF4E (eIF4E(S)), which supports the multiplication of Pea seed-borne mosaic virus (PSbMV). In common with hosts for other potyviruses, some pea lines contain a recessive allele (sbm1) encoding a mutant eIF4E (eIF4E(R)) that fails to interact functionally with the PSbMV avirulence protein, VPg, giving genetic resistance to infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A field survey of faba bean (Vicia [aba L.) for viruses in six Arab countries showed the presence of nine viruses. Bean leaf roll virus (BLRV), bean yellow mosaic virus (BYMV), broad bean mottle virus (BBMV) and to a lesser extent broad bean stain virus (BBSV) were the most common. When testing with ELISA 789 samples with symptoms suggestive of virus infection collected from Egypt, Lebanon, Morocco, Sudan, Syria and Tunisia, BBMV was detected in 203 samples, BBSV in 151, broad bean true mosaic virus (BBTMV) in 7, broad bean wilt virus (BBWV) in 47, BYMV in 314, cucumber mosaic virus (CMV) in 96, pea enation mosaic virus (PEMV) in 31, and pea seed-borne mosaic virus (PSbMV) in 49 samples. Identity of selected field isolates was confirmed by electron microscopy and host reaction studies. In a yield experiment, infection with BYMV, BBMV and BBSV 11 weeks after sowing (pre-flowering) led to 81, 54 and 84% yield loss, respectively. Inoculation with the same viruses 15 weeks after sowing (flowering) and 20 weeks after sowing (pod setting) led to 56, 84 and 18%, and 39, 37 and 18% yield loss, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Turnip crinkle virus (TCV) and Pea enation mosaic virus (PEMV) are two positive (+)-strand RNA viruses that are used to investigate the regulation of translation and replication due to their small size and simple genomes. Both viruses contain cap-independent translation elements (CITEs) within their 3´ untranslated regions (UTRs) that fold into tRNA-shaped structures (TSS) according to nuclear magnetic resonance and small angle x-ray scattering analysis (TCV) and computational prediction (PEMV). Specifically, the TCV TSS can directly associate with ribosomes and participates in RNA-dependent RNA polymerase (RdRp) binding. The PEMV kissing-loop TSS (kl-TSS) can simultaneously bind to ribosomes and associate with the 5´ UTR of the viral genome. Mutational analysis and chemical structure probing methods provide great insight into the function and secondary structure of the two 3´ CITEs. However, lack of 3-D structural information has limited our understanding of their functional dynamics. Here, I report the folding dynamics for the TCV TSS using optical tweezers (OT), a single molecule technique. My study of the unfolding/folding pathways for the TCV TSS has provided an unexpected unfolding pathway, confirmed the presence of Ψ3 and hairpin elements, and suggested an interconnection between the hairpins and pseudoknots. In addition, this study has demonstrated the importance of the adjacent upstream adenylate-rich sequence for the formation of H4a/Ψ3 along with the contribution of magnesium to the stability of the TCV TSS. In my second project, I report on the structural analysis of the PEMV kl-TSS using NMR and SAXS. This study has re-confirmed the base-pair pattern for the PEMV kl-TSS and the proposed interaction of the PEMV kl-TSS with its interacting partner, hairpin 5H2. The molecular envelope of the kl-TSS built from SAXS analysis suggests the kl-TSS has two functional conformations, one of which has a different shape from the previously predicted tRNA-shaped form. Along with applying biophysical methods to study the structural folding dynamics of RNAs, I have also developed a technique that improves the production of large quantities of recombinant RNAs in vivo for NMR study. In this project, I report using the wild-type and mutant E.coli strains to produce cost-effective, site-specific labeled, recombinant RNAs. This technique was validated with four representative RNAs of different sizes and complexity to produce milligram amounts of RNAs. The benefit of using site-specific labeled RNAs made from E.coli was demonstrated with several NMR techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genomic sequence of an Australian isolate of carrot mottle umbravirus (CMoV-A) was determined from cDNA generated from dsRNA. This provides the first data on the genome organization and phylogeny of an umbravirus. The 4201-nucleotide genome contains four major open reading frames (ORFs). Analysis suggests that ORF2 encodes an RNA-dependent RNA polymerase, that ORF4 encodes a movement protein, and that the virus has no coat protein gene. The functions of ORFs 1 and 3 remain unknown. ORF2 is probably translated following ribosomal frameshifting. ORFs 3 and 4 are probably translated from a subgenomic mRNA. Sequence comparisons showed CMoV-A to be closely related to pea enation mosaic RNA2 NA2), but also to have affinities with the Bromoviridae. These findings shed light on the relationships between the luteoviruses, PEMV, and the umbraviruses and on the relationships between the carmo-like viruses and the Bromoviridae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abacá mosaic virus (AbaMV) is related to members of the sugarcane mosaic virus subgroup of the genus Potyvirus. The ~2 kb 3′ terminal region of the viral genome was sequenced and, in all areas analysed, found to be most similar to Sugarcane mosaic virus (SCMV) and distinct from Johnsongrass mosaic virus (JGMV), Maize dwarf mosaic virus (MDMV) and Sorghum mosaic virus (SrMV). Cladograms of the 3′ terminal region of the NIb protein, the coat protein core and the 3′ untranslated region showed that AbaMV clustered with SCMV, which was a distinct clade and separate from JGMV, MDMV and SrMV. The N-terminal region of the AbaMV coat protein had a unique amino acid repeat motif different from those previously published for other strains of SCMV. The first experimental transmission of AbaMV from abacá (Musa textilis) to banana (Musa sp.), using the aphid vectors Rhopalosiphum maidis and Aphis gossypii, is reported. Polyclonal antisera for the detection of AbaMV in western blot assays and ELISA were prepared from recombinant coat protein expressed in E. coli. A reverse transcriptase PCR diagnostic assay, with microtitre plate colourimetric detection, was developed to discriminate between AbaMV and Banana bract mosaic virus, another Musa-infecting potyvirus. Sequence data, host reactions and serological relationships indicate that AbaMV should be considered a distinct strain of SCMV, and the strain designation SCMV-Ab is suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have characterised six Australian Cucumber mosaic virus (CMV) strains belonging to different subgroups, determined by the sequence of their complete RNA 3 and by their host range and the symptoms they cause on species in the Solanaceae, Cucurbitaceae and on sweet corn. These data allowed classification of strains into the known three CMV subgroups and identification of plant species able to differentiate the Australian strains by symptoms and host range. Western Australian strains 237 and Twa and Queensland strains 207 and 242 are closely related members of CMV subgroup IA, which cause similar severe symptoms on Nicotiana species. Strains 207 and 237 (subgroup IA) were the only strains tested which systemically infected sweet corn. Strain 243 caused the most severe symptoms of all strains on Nicotiana species, tomato and capsicum and appears to be the first confirmed subgroup IB strain reported in Australia. Based on pair-wise distance analysis and phylogeny of RNA 3, as well as mild disease symptoms on Nicotiana species, CMV 241 was assigned to subgroup II, as the previously described Q-CMV and LY-CMV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cucumber mosaic virus (CMV) was found by reverse transcription polymerase chain reaction (RT-PCR) to be not fully systemic in naturally infected kava (Piper methysticum) plants in Fiji. Twenty-six of 48 samples (54%) from various tissues of three recently infected plants were CMV-positive compared with 7/51 samples (14%) from three long-term infections (plants affected by dieback for more than 1 year). The virus was also found to have a limited ability to move into newly formed stems. CMV was detected in only 2/23 samples taken from re-growth stems arising from known CMV infected/dieback affected plants. Mechanical inoculation experiments conducted in Fiji indicate that the known kava intercrop plants banana (Musa spp.), pineapple (Ananas comosus), peanut (Arachis hypogaea) and the common weed Mikania micrantha are potential hosts for a dieback-causing strain of CMV It was not possible to transmit the virus mechanically to the common kava intercrop plants taro (Colocasia esculenta), Xanthosoma sp., sweet potato (Ipomoea batatas), yam (Dioscorea alata), papaya (Carica papaya) or the weed Momordica charantia. Implications of the results of this research on a possible integrated disease management strategy are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carrot was confirmed as a new natural and experimental host of Watermelon mosaic virus by serology, host reactions and sequence comparisons of the coat protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The properties of the S-strain of cucumber mosaic virus (S-CMV) and the B-strain of tomato aspermy virus (B-TAV) have been studied with respect to their (i) size and sedimentation behavior, (ii) requirement of divalent metal ions for stability, (iii) sensitivity towards chloride salts and the anionic detergent sodium dodecyl sulfate, (iv) solubility in ammonium sulfate-containing buffers, and (v) pH-dependent structural transitions. The results indicate that the coat protein of B-TAV is more hydrophobic than the other well-studied strains of TAV and CMV. Circular dichroism and uv absorption studies reveal pH-dependent structural transitions, although these do not result in particle swelling. These transitions appear to alter the strength of protein-nucleic acid interactions in these viruses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein-protein interactions play a Crucial role in Virus assembly and stability. With the view of disrupting capsid assembly and capturing smaller oligomers, interfacial residue mutations were carried Out in the coat protein gene of Sesbania Mosaic Virus, a T=3 ss (+) RNA plant virus. A single point mutation of a Trp 170 present at the five-fold interface of the virus to a charged residue (Glu or Lys) arrested assembly of virus like particles and resulted in stable Soluble dimers of the capsid Protein. The X-ray crystal structure of one of the isolated dimer mutants - rCP Delta N65W170K was determined to a resolution of 2.65 angstrom. Detailed analysis of the dimeric mutant protein structure revealed that a number of Structural changes take place, especially in the loop and interfacial regions during the course of assembly. The isolated chiller was ``more relaxed'' than the dimer found in the T=3 or T=1 capsids. The isolated dimer does not bind Ca2+ ion and consequently four C-terminal residues are disordered. The FG loop, which interacts with RNA in the Virus, has different conformations in the isolated dimer and the intact Virus Suggesting its flexible nature and the conformational changes that accompany assembly. The isolated choler mutant was much less stable when compared to the assembled capsids, suggesting the importance of inter-subunit interactions and Ca2+ mediated interactions in the stability of the capsids. With this study, SeMV becomes the first icosahedral virus for which X-ray crystal Structures of T=3, T=1 capsids as well as a smaller oligomer of the capsid protein have been determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sesbania mosaic virus (SMV) is an isometric, ss-RNA plant virus found infecting Sesbania grandiflora plants in fields near Tirupathi, South India. The virus particles, which sediment at 116 S at pH 5.5, swell upon treatment with EDTA at pH 7.5 resulting in the reduction of the sedimentation coefficient to 108 S. SMV coat protein amino acid sequence was determined and found to have approximately 60% amino acid sequence identity with that of southern bean mosaic virus (SBMV). The amino terminal 60 residue segment, which contains a number of positively charged residues, is less well conserved between SMV and SBMV when compared to the rest of the sequence. The 3D structure of SMV was determined at 3.0 Å resolution by molecular replacement techniques using SBMV structure as the initial phasing model. The icosahedral asymmetric unit was found to contain four calcium ions occurring in inter subunit interfaces and three protein subunits, designated A, B and C. The conformation of the C subunit appears to be different from those of A and B in several segments of the polypeptide. These observations coupled with structural studies on SMV partially depleted of calcium suggest a plausible mechanisms for the initiation of the disassembly of the virus capsid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complete genome of an Australian isolate of zantedeschia mild mosaic virus (ZaMMV) causing mosaic symptoms on Alocasia sp. (designated ZaMMVAU) was cloned and sequenced. The genome comprises 9942 nucleotides (excluding the poly-A tail) and encodes a polyprotein of 3167 amino acids. The sequence is most closely related to a previously reported ZaMMV isolate from Taiwan (ZaMMV-TW), with 82 and 86 % identity at the nucleotide and amino acid level, respectively. Unlike the amino acid sequence of ZaMMV-TW, however, ZaMMV-AU does not contain a polyglutamine stretch at the N-terminus of the coat-protein-coding region upstream of the DAG motif. This is the first report of ZaMMV from Australia and from Alocasia sp.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sesbania mosaic virus (SeMV) is a ss-RNA (4149 nt) plant sobemovirus isolated from farmer's field around Tirupathi, Andhra Pradesh. The viral capsid (30 nm diameter) consists of 180 copies of protein subunits (MW 29 kDa) organized with icosahedral symmetry. In order to understand the mechanism of assembly of SeMV, a large number of deletion and substitution mutants of the coat protein (CP) were constructed. Recombinant SeMV CP (rCP) as well as the N-terminal rCP deletion mutant Delta N22 were found to assemble in E. coli into virus-like particles (VLPs). Delta N36 and Delta N65 mostly formed smaller particles consisting of 60 protein subunits. Although particlem assembly was not affected due to the substitution of aspartates (D14 and D149) that coordinate calcium ions by asparagines, the stability of the resulting capsids was drastically reduced. Deletion of residues forming a characteristic beta-annulus at the icosahedral 3-folds did not affect the assembly of VLPs. Mutation of a single tryptophan, which occurs near the icosahedral fivefold axis to glutamate or lysine, resulted in the disruption of the capsid leading to soluble dimers that resembled the quasi-dimer structure of the native virus. Replacement of positively charged residues in the amino terminal segment of CP resulted in the formation of empty shells. Based on these observations, a plausible mechanism of assembly is proposed.