25 resultados para Pausteurella haemolytica
Resumo:
Tesis (Doctorado en Medicina Veterinaria) UANL
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Frequency of Mannheimia haemolytica and Pasteurella multocida in the respiratory tract of lambs in the region of Botucatu, SP, Brazil, was studied. Nasopharingeal and oropharingeal swabs were obtained from 262 animals: 180 from healthy and 82 from animals with respiratory diseases. M. haemolytica was the most prevalent (47%), followed by the association of M. haemolytica and P. multocida (27%), and P. multocida (11%). Animals with respiratory disease presented higher occurrence of P. multocida in the nasopharynx as compared to healthy animals (P<0.05). No significant difference in isolation rate of M. haemolytica, P. multocida, and association of these microorganisms in the oropharynx of healthy and affected animals was observed.
Resumo:
Pasteurella multocida and Mannheimia haemolytica (P. haemolytica) are associated with ovine respiratory diseases. With the purpose of observe the susceptibility in vitro of these organisms against antimicrobials, were collected samples of nasopharingeal (n=180) and oropharingeal (n=82) from ovines healthy and with respiratory disease. Among the antimicrobials tested, the sensibility was greater for enrofloxacin (100%) and florfenicol (100%), for both bacteria. The greater resistance indices for M. haemolytica and P. multocida were observed with tetracyclin (15.64% and 17.65% respectively) and penicillin (1.82% and 4.2%).
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Ovine pulmonary surfactant is bactericidal for Pasteurella haemolytica when surfactant and bacteria mixtures are incubated with normal ovine serum. To isolate this component, surfactant (1 mg/ml) was centrifuged at 100,000 x gav, and the supernatant was fractionated by HPLC. Fractions were eluted with acetonitrile (10-100%)/0.1% trifluoracetic acid and tested for bactericidal activity. Amino acid and sequence analysis of three bactericidal fractions showed that fraction 2 contained H-GDDDDDD-OH, fraction 3 contained H-DDDDDDD-OH, and fraction 6 contained H-GADDDDD-OH. Peptides in 0.14 M NaCl/10 microM ZnCl2 (zinc saline solution) induced killing of P. haemolytica and other bacteria comparable to defensins and beta-defensins [minimal bactericidal concentration (MBC)50 range, 0.01-0.06 mM] but not in 0.14 M NaCl/10 mM sodium phosphate buffer, pH 7.2/0.5 mM CaCl2/0.15 mM MgCl2 (MBC50 range, 2.8-11.5 mM). Bactericidal activity resided in the core aspartate hexapeptide homopolymeric region, and MBC50 values of aspartate dipeptide-to-heptapeptide homopolymers were inversely proportional to the number of aspartate residues in the peptide. P. haemolytica incubated with H-DDDDDD-OH in zinc saline solution was killed within 30 min. Ultrastructurally, cells contained flocculated intracellular constituents. In contrast to cationic defensins and beta-defensins, surfactant-associated anionic peptides are smaller in size, opposite in charge, and are bactericidal in zinc saline solution. They are members of another class of peptide antibiotics containing aspartate, which when present in pulmonary secretions may help clear bacteria as a part of the innate pulmonary defense system.
Resumo:
Lamb suckling has been suggested to be an important way of infecting a ewe's udder with different bacteria, including Mannheimia haemolytica. To test the potential role of lambs in transferring Mannheimia species to the ewe’s udder, the restriction endonuclease cleavage patterns of isolates obtained from nasopharyngeal swabs were compared with those obtained from cases of mastitis. Sterile cotton swabs were used to collect nasopharyngeal samples from 50 ewes and 36 lambs from three flocks. M. haemolytica and Mannheimia glucosida as well as haemolytic Mannheimia ruminalis-like organisms were detected in the upper respiratory tract of lambs and ewes. Comparison of the restriction endonuclease cleavage patterns of the isolates suggested that the M. haemolytica isolates obtained from different milk samples from ewes with mastitis were more clonal than those obtained from the nasal swabs. However, some nasal isolates within both Mannheimia species had restriction endonuclease cleavage patterns identical to those obtained from milk samples from ewes with mastitis, indicating that lambs may have a role in transferring these organisms to the udder. More clonality was observed between the M. glucosida isolates than between M. haemolytica isolates.
Resumo:
Microplusin, a Rhipicephalus (Boophilus) microplus antimicrobial peptide (AMP) is the first fully characterized member of a new family of cysteine-rich AMPs with histidine-rich regions at the N and C termini. In the tick, microplusin belongs to the arsenal of innate defense molecules active against bacteria and fungi. Here we describe the NMR solution structure of microplusin and demonstrate that the protein binds copper II and iron II. Structured as a single alpha-helical globular domain, microplusin consists of five alpha-helices: alpha 1 (residues Gly-9 to Arg-21), alpha 2 (residues Glu-27 to Asn-40), alpha 3 (residues Arg-44 to Thr-54), alpha 4 (residues Leu-57 to Tyr-64), and alpha 5 (residues Asn-67 to Cys-80). The N and C termini are disordered. This structure is unlike any other AMP structures described to date. We also used NMR spectroscopy to map the copper binding region on microplusin. Finally, using the Gram-positive bacteria Micrococcus luteus as a model, we studied of mode of action of microplusin. Microplusin has a bacteriostatic effect and does not permeabilize the bacterial membrane. Because microplusin binds metals, we tested whether this was related to its antimicrobial activity. We found that the bacteriostatic effect of microplusin was fully reversed by supplementation of culture media with copper II but not iron II. We also demonstrated that microplusin affects M. luteus respiration, a copper-dependent process. Thus, we conclude that the antibacterial effect of microplusin is due to its ability to bind and sequester copper II.
Resumo:
Foram examinados 10 bezerros da raça Holandesa com duas a quatro semanas de idade, distribuídos aleatoriamente em dois grupos, controle e infectado. Os bezerros do grupo-controle foram inoculados por via intrabronquial com 5ml de solução salina fosfato-tamponada Dulbecco (DPBSS). Os do grupo infectado receberam um inóculo contendo 5x10(9) unidades formadoras de colônia-UFC de Mannheimia (Pasteurella) haemolytica, suspensas em 5ml de DPBSS. As amostras de sangue foram colhidas 15 minutos antes e uma, duas, quatro e seis horas após a inoculação. O proteinograma sérico foi obtido por eletroforese em gel de acrilamida. As concentrações séricas das proteínas de pesos moleculares 125.000 D (ceruloplasmina), 60.000 D (a1-antitripsina), 45.000 D (haptoglobina) e 40.000 D (glicoproteína ácida) foram significativamente maiores em bezerros infectados do que nos do grupo-controle. Os resultados indicam que as concentrações das proteínas de fase aguda se elevaram mais rapidamente que o previamente imaginado. O proteinograma sérico pode ser útil no monitoramento da evolução da pneumonia de bezerros causada por M. haemolytica.
Mannheimiose pulmonar experimental em bezerros: swab nasal e nasofaringeano como auxílio diagnóstico
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência Animal - FMVA
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Mastitis occurrence in mares is low if compared to other livestock species. The microorganisms often isolated and detected in milk and mammary gland secretions of mares are Streptococcus beta-haemolytica, Staphylococcus spp., Pseudomonas aeruginosa, Actinobacillus spp., and enterobacter. The present experiment was designed to evaluate the main microorganisms present in the milk of healthy mares and having a mammary infection. One hundred and ten mammary glands from 55 lactating mares were analyzed, ranging from 15 to 150 d post-partum. The mastitis diagnostic was performed through analysis of the milk via the screened test of the mug with dark background (Tamis), mammary gland inflammation and/or systemic signs. The subclinical mammary gland infection was characterized via the California Mastitis Test (CMT). From the 55 lactating mares, 2 (3.64%) had clinical mastitis. Following the CMT, the mares presented: 13 (23.60%), 7 (12.72%), and 12 (21.88%) scores from 1+, 2+, and 3+, respectively. From the 110 mamary glands were analysed, in 47 (85.45%) of these samples strains of microorganisms were isolated. In summary, results from our experiment suggest a low occurrence of clinical mastitis in lactating mares.
Resumo:
RTX toxins are bacterial pore-forming toxins that are particularly abundant among pathogenic species of Pasteurellaceae, in which they play a major role in virulence. RTX toxins of several primary pathogens of the family of Pasteurellaceae are directly involved in causing necrotic lesions in the target organs. Many RTX toxins are known as haemolysins because they lyse erythrocytes in vitro, an effect that is non-specific, but which serves as a useful marker in bacteriological identification and as an easily measurable signal in vitro in experimental studies. More recent studies have shown that the specific targets of most RTX toxins are leukocytes, with RTX toxins binding to the corresponding beta-subunit (CD18) of beta2 integrins and then exerting cytotoxic activity. After uptake by the target cell, at sub-lytic concentrations, some RTX toxins are transported to mitochondria and induce apoptosis. For several RTX toxins the binding to CD18 has been shown to be host specific and this seems to be the basis for the host range specificity of these RTX toxins. Observations on two very closely related species of the Pasteurellaceae family, Actinobacillus suis, a porcine pathogen particularly affecting suckling pigs, and Actinobacillus equuli subsp. haemolytica, which causes pyosepticaemia in new-born foals (sleepy foal disease), have revealed that they express different RTX toxins, named ApxI/II and Aqx, respectively. These RTX toxins are specifically cytotoxic for porcine and equine leukocytes, respectively. Furthermore, the ApxI and Aqx toxins of these species, when expressed in an isogenetic background in Escherichia coli, are specifically cytotoxic for leukocytes of their respective hosts. These data indicate the determinative role of RTX toxins in host specificity of pathogenic species of Pasteurellaceae.