760 resultados para Pauli nonlocality


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonlocal interactions are an intrinsically quantum phenomenon. In this work we point out that, in the context of heavy ions, such interactions can be studied through the refractive elastic scattering of these systems at intermediate energies. We show that most of the observed energy dependence of the local equivalent bare potential arises from the exchange nonlocality. The nonlocality parameter extracted from the data was found to be very close to the one obtained from folding models. The effective mass of the colliding, heavy-ion, system was found to be close to the nucleon effective mass in nuclear matter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we present new coupled channel calculations with the Sao Paulo potential (SPP) as the bare interaction, and an imaginary potential with system and energy independent normalization that has been developed to take into account dissipative processes in heavy-ion reactions. This imaginary potential is based on high-energy nucleon interaction in nuclear medium. Our theoretical predictions for energies up to approximate to 100 MeV/nucleon agree very well with the experimental data for the p, n + nucleus, (16)O + (27)Al, (16)O + (60)Ni, (58)Ni + (124)Sn, and weakly bound projectile (7)Li + (120)Sn systems. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, we investigate the limitation of the use of strength coefficients on double folding potentials to study the presence of the threshold anomaly in the elastic scattering of halo nuclei at near barrier energies. For this purpose, elastic angular distributions and reaction cross sections for the He-6 on Bi-209 are studied. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the relationship between tripartite entanglement and genuine tripartite nonlocality for three-qubit pure states in the Greenberger-Horne-Zeilinger class. We consider a family of states known as the generalized Greenberger-Horne-Zeilinger states and derive an analytical expression relating the three-tangle, which quantifies tripartite entanglement, to the Svetlichny inequality, which is a Bell-type inequality that is violated only when all three qubits are nonlocally correlated. We show that states with three-tangle less than 1/2 do not violate the Svetlichny inequality. On the other hand, a set of states known as the maximal slice states does violate the Svetlichny inequality, and exactly analogous to the two-qubit case, the amount of violation is directly related to the degree of tripartite entanglement. We discuss further interesting properties of the generalized Greenberger-Horne-Zeilinger and maximal slice states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The violation of the Svetlichny's inequality (SI) [Phys. Rev. D 35, 3066 (1987)] is sufficient but not necessary for genuine tripartite nonlocal correlations. Here we quantify the relationship between tripartite entanglement and the maximum expectation value of the Svetlichny operator (which is bounded from above by the inequality) for the two inequivalent subclasses of pure three-qubit states: the Greenberger-Horne-Zeilinger (GHZ) class and the W class. We show that the maximum for the GHZ-class states reduces to Mermin's inequality [Phys. Rev. Lett. 65, 1838 (1990)] modulo a constant factor, and although it is a function of the three tangle and the residual concurrence, large numbers of states do not violate the inequality. We further show that by design SI is more suitable as a measure of genuine tripartite nonlocality between the three qubits in the W-class states,and the maximum is a certain function of the bipartite entanglement (the concurrence) of the three reduced states, and only when their sum attains a certain threshold value do they violate the inequality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There have been theoretical and experimental studies on quantum nonlocality for continuous variables, based on dichotomic observables. In particular, we are interested in two cases of dichotomic observables for the light field of continuous variables: One case is even and odd numbers of photons and the other case is no photon and the presence of photons. We analyze various observables to give the maximum violation of Bell's inequalities for continuous-variable states. We discuss an observable which gives the violation of Bell's inequality for any entangled pure continuous-variable state. However, it does not have to be a maximally entangled state to give the maximal violation of Bell's inequality. This is attributed to a generic problem of testing the quantum nonlocality of an infinite- dimensional state using a dichotomic observable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the purpose of a nonlocality test, we propose a general correlation observable of two parties by utilizing local d- outcome measurements with SU(d) transformations and classical communications. Generic symmetries of the SU(d) transformations and correlation observables are found for the test of nonlocality. It is shown that these symmetries dramatically reduce the number of numerical variables, which is important for numerical analysis of nonlocality. A linear combination of the correlation observables, which is reduced to the Clauser- Home-Shimony-Holt (CHSH) Bell's inequality for two outcome measurements, leads to the Collins-Gisin-Linden-Massar-Popescu (CGLMP) nonlocality test for d-outcome measurement. As a system to be tested for its nonlocality, we investigate a continuous- variable (CV) entangled state with d measurement outcomes. It allows the comparison of nonlocality based on different numbers of measurement outcomes on one physical system. In our example of the CV state, we find that a pure entangled state of any degree violates Bell's inequality for d(greater than or equal to2) measurement outcomes when the observables are of SU(d) transformations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum nonlocality is tested for an entangled coherent state, interacting with a dissipative environment. A pure entangled coherent state violates Bell's inequality regardless of its coherent amplitude. The higher the initial nonlocality, the more rapidly quantum nonlocality is lost. The entangled coherent state can also be investigated in the framework of 2x2 Hilbert space. The quantum nonlocality persists longer in 2x2 Hilbert space. When it decoheres it is found that the entangled coherent state fails the nonlocality test, which contrasts with the fact that the decohered entangled state is always entangled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We generalize Greenberger-Horne-Zeilinger (GHZ) nonlocality to every even-dimensional and odd-partite system. For the purpose we employ concurrent observables that are incompatible and nevertheless have a common eigenstate. It is remarkable that a tripartite system can exhibit the genuinely high-dimensional GHZ nonlocality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a recent paper, Verma et al. [Eur. Phys. J. D 42, 235 (2007)] have reported results for energy levels, radiative rates, collision strengths, and effective collision strengths for transitions among the lowest 17 levels of the (1s(2)2s(2)2p(6))3s(2)3p(6), 3s(2)3p(5)3d and 3s3p(6)3d configurations of Ni XI. They adopted the CIV3 and R-matrix codes for the generation of wavefunctions and the scattering process, respectively. In this paper, through two independent calculations performed with the fully relativistic DARC (along with GRASP) and FAC codes, we demonstrate that their results are unreliable. New data are presented and their accuracy is assessed.