991 resultados para Pattern motion
Resumo:
A key question regarding primate visual motion perception is whether the motion of 2D patterns is recovered by tracking distinctive localizable features [Lorenceau and Gorea, 1989; Rubin and Hochstein, 1992] or by integrating ambiguous local motion estimates [Adelson and Movshon, 1982; Wilson and Kim, 1992]. For a two-grating plaid pattern, this translates to either tracking the grating intersections or to appropriately combining the motion estimates for each grating. Since both component and feature information are simultaneously available in any plaid pattern made of contrast defined gratings, it is unclear how to determine which of the two schemes is actually used to recover the plaid"s motion. To address this problem, we have designed a plaid pattern made with subjective, rather than contrast defined, gratings. The distinguishing characteristic of such a plaid pattern is that it contains no contrast defined intersections that may be tracked. We find that notwithstanding the absence of such features, observers can accurately recover the pattern velocity. Additionally we show that the hypothesis of tracking "illusory features" to estimate pattern motion does not stand up to experimental test. These results present direct evidence in support of the idea that calls for the integration of component motions over the one that mandates tracking localized features to recover 2D pattern motion. The localized features, we suggest, are used primarily as providers of grouping information - which component motion signals to integrate and which not to.
Resumo:
How do human observers perceive a coherent pattern of motion from a disparate set of local motion measures? Our research has examined how ambiguous motion signals along straight contours are spatially integrated to obtain a globally coherent perception of motion. Observers viewed displays containing a large number of apertures, with each aperture containing one or more contours whose orientations and velocities could be independently specified. The total pattern of the contour trajectories across the individual apertures was manipulated to produce globally coherent motions, such as rotations, expansions, or translations. For displays containing only straight contours extending to the circumferences of the apertures, observers' reports of global motion direction were biased whenever the sampling of contour orientations was asymmetric relative to the direction of motion. Performance was improved by the presence of identifiable features, such as line ends or crossings, whose trajectories could be tracked over time. The reports of our observers were consistent with a pooling process involving a vector average of measures of the component of velocity normal to contour orientation, rather than with the predictions of the intersection-of-constraints analysis in velocity space.
Resumo:
When viewing a drifting plaid stimulus, perceived motion alternates over time between coherent pattern motion and a transparent impression of the two component gratings. It is known that changing the intrinsic attributes of such patterns (e.g. speed, orientation and spatial frequency of components) can influence percept predominance. Here, we investigate the contribution of extrinsic factors to perception; specifically contextual motion and eye movements. In the first experiment, the percept most similar to the speed and direction of surround motion increased in dominance, implying a tuned integration process. This shift primarily involved an increase in dominance durations of the consistent percept. The second experiment measured eye movements under similar conditions. Saccades were not associated with perceptual transitions, though blink rate increased around the time of a switch. This indicates that saccades do not cause switches, yet saccades in a congruent direction might help to prolong a percept because i) more saccades were directionally congruent with the currently reported percept than expected by chance, and ii) when observers were asked to make deliberate eye movements along one motion axis, this increased percept reports in that direction. Overall, we find evidence that perception of bistable motion can be modulated by information from spatially adjacent regions, and changes to the retinal image caused by blinks and saccades.
Resumo:
How does nearby motion affect the perceived speed of a target region? When a central drifting Gabor patch is surrounded by translating noise, its speed can be misperceived over a fourfold range. Typically, when a surround moves in the same direction, perceived centre speed is reduced; for opposite-direction surrounds it increases. Measuring this illusion for a variety of surround properties reveals that the motion context effects are a saturating function of surround speed (Experiment I) and contrast (Experiment II). Our analyses indicate that the effects are consistent with a subtractive process, rather than with speed being averaged over area. In Experiment III we exploit known properties of the motion system to ask where these surround effects impact. Using 2D plaid stimuli, we find that surround-induced shifts in perceived speed of one plaid component produce substantial shifts in perceived plaid direction. This indicates that surrounds exert their influence early in processing, before pattern motion direction is computed. These findings relate to ongoing investigations of surround suppression for direction discrimination, and are consistent with single-cell findings of direction-tuned suppressive and facilitatory interactions in primary visual cortex (V1).
Resumo:
This study was designed to examine differences in the coupling dynamics between upper limb motion, physiological tremor and whole body postural sway in young healthy adults. Acceleration of the hand and fingers, forearm EMG activity and postural sway data were recorded. Estimation of the degree of bilateral and limb motion-postural sway coupling was determined by cross correlation, coherence and Cross-ApEn analyses. The results of the analysis revealed that, under postural tremor conditions, there was no significant coupling between limbs, muscles or sway across all metrics of coupling. In contrast, performing a rapid alternating flexion/extension movement about the wrist joint (with one or both limbs) resulted in stronger coupling between limb motion and postural sway. These results support the view that, for physiological tremor responses, the control of postural sway is maintained independent to tremor in the upper limb. However, increasing the level of movement about a distal segment of one arm (or both) leads to increased coupling throughout the body. The basis for this increased coupling would appear to be related to the enhanced neural drive to task-specific muscles within the upper limb.
Resumo:
Background - When a moving stimulus and a briefly flashed static stimulus are physically aligned in space the static stimulus is perceived as lagging behind the moving stimulus. This vastly replicated phenomenon is known as the Flash-Lag Effect (FLE). For the first time we employed biological motion as the moving stimulus, which is important for two reasons. Firstly, biological motion is processed by visual as well as somatosensory brain areas, which makes it a prime candidate for elucidating the interplay between the two systems with respect to the FLE. Secondly, discussions about the mechanisms of the FLE tend to recur to evolutionary arguments, while most studies employ highly artificial stimuli with constant velocities. Methodology/Principal Finding - Since biological motion is ecologically valid it follows complex patterns with changing velocity. We therefore compared biological to symbolic motion with the same acceleration profile. Our results with 16 observers revealed a qualitatively different pattern for biological compared to symbolic motion and this pattern was predicted by the characteristics of motor resonance: The amount of anticipatory processing of perceived actions based on the induced perspective and agency modulated the FLE. Conclusions/Significance - Our study provides first evidence for an FLE with non-linear motion in general and with biological motion in particular. Our results suggest that predictive coding within the sensorimotor system alone cannot explain the FLE. Our findings are compatible with visual prediction (Nijhawan, 2008) which assumes that extrapolated motion representations within the visual system generate the FLE. These representations are modulated by sudden visual input (e.g. offset signals) or by input from other systems (e.g. sensorimotor) that can boost or attenuate overshooting representations in accordance with biased neural competition (Desimone & Duncan, 1995).
Resumo:
In the region of self-organized criticality (SOC) interdependency between multi-agent system components exists and slight changes in near-neighbor interactions can break the balance of equally poised options leading to transitions in system order. In this region, frequency of events of differing magnitudes exhibits a power law distribution. The aim of this paper was to investigate whether a power law distribution characterized attacker-defender interactions in team sports. For this purpose we observed attacker and defender in a dyadic sub-phase of rugby union near the try line. Videogrammetry was used to capture players’ motion over time as player locations were digitized. Power laws were calculated for the rate of change of players’ relative position. Data revealed that three emergent patterns from dyadic system interactions (i.e., try; unsuccessful tackle; effective tackle) displayed a power law distribution. Results suggested that pattern forming dynamics dyads in rugby union exhibited SOC. It was concluded that rugby union dyads evolve in SOC regions suggesting that players’ decisions and actions are governed by local interactions rules.
Resumo:
While spatial determinants of emmetropization have been examined extensively in animal models and spatial processing of human myopes has also been studied, there have been few studies investigating temporal aspects of emmetropization and temporal processing in human myopia. The influence of temporal light modulation on eye growth and refractive compensation has been observed in animal models and there is evidence of temporal visual processing deficits in individuals with high myopia or other pathologies. Given this, the aims of this work were to examine the relationships between myopia (i.e. degree of myopia and progression status) and temporal visual performance and to consider any temporal processing deficits in terms of the parallel retinocortical pathways. Three psychophysical studies investigating temporal processing performance were conducted in young adult myopes and non-myopes: (1) backward visual masking, (2) dot motion perception and (3) phantom contour. For each experiment there were approximately 30 young emmetropes, 30 low myopes (myopia less than 5 D) and 30 high myopes (5 to 12 D). In the backward visual masking experiment, myopes were also classified according to their progression status (30 stable myopes and 30 progressing myopes). The first study was based on the observation that the visibility of a target is reduced by a second target, termed the mask, presented quickly after the first target. Myopes were more affected by the mask when the task was biased towards the magnocellular pathway; myopes had a 25% mean reduction in performance compared with emmetropes. However, there was no difference in the effect of the mask when the task was biased towards the parvocellular system. For all test conditions, there was no significant correlation between backward visual masking task performance and either the degree of myopia or myopia progression status. The dot motion perception study measured detection thresholds for the minimum displacement of moving dots, the maximum displacement of moving dots and degree of motion coherence required to correctly determine the direction of motion. The visual processing of these tasks is dominated by the magnocellular pathway. Compared with emmetropes, high myopes had reduced ability to detect the minimum displacement of moving dots for stimuli presented at the fovea (20% higher mean threshold) and possibly at the inferior nasal retina. The minimum displacement threshold was significantly and positively correlated to myopia magnitude and axial length, and significantly and negatively correlated with retinal thickness for the inferior nasal retina. The performance of emmetropes and myopes for all the other dot motion perception tasks were similar. In the phantom contour study, the highest temporal frequency of the flickering phantom pattern at which the contour was visible was determined. Myopes had significantly lower flicker detection limits (21.8 ± 7.1 Hz) than emmetropes (25.6 ± 8.8 Hz) for tasks biased towards the magnocellular pathway for both high (99%) and low (5%) contrast stimuli. There was no difference in flicker limits for a phantom contour task biased towards the parvocellular pathway. For all phantom contour tasks, there was no significant correlation between flicker detection thresholds and magnitude of myopia. Of the psychophysical temporal tasks studied here those primarily involving processing by the magnocellular pathway revealed differences in performance of the refractive error groups. While there are a number of interpretations for this data, this suggests that there may be a temporal processing deficit in some myopes that is selective for the magnocellular system. The minimum displacement dot motion perception task appears the most sensitive test, of those studied, for investigating changes in visual temporal processing in myopia. Data from the visual masking and phantom contour tasks suggest that the alterations to temporal processing occur at an early stage of myopia development. In addition, the link between increased minimum displacement threshold and decreasing retinal thickness suggests that there is a retinal component to the observed modifications in temporal processing.
Resumo:
This study examined whether the conspicuity of road workers at night can be enhanced by distributing retroreflective strips across the body to present a pattern of biological motion (biomotion). Twenty visually normal drivers (mean age = 40.3 years) participated in an experiment conducted at two open-road work sites (one suburban and one freeway) at night-time. At each site, four road workers walked in place wearing a standard road worker night vest either (a) alone, (b) with additional retroreflective strips on thighs, (c) with additional retroreflective strips on ankles and knees, or (d) with additional retroreflective strips on eight moveable joints (full biomotion). Participants, seated in stationary vehicles at three different distances (80 m, 160 m, 240 m), rated the relative conspicuity of the four road workers. Road worker conspicuity was maximized by the full biomotion configuration at all distances and at both sites. The addition of ankle and knee markings also provided significant benefits relative to the standard vest alone. The effects of clothing configuration were more evident at the freeway site and at shorter distances. Overall, the full biomotion configuration was ranked to be most conspicuous and the vest least conspicuous. These data provide the first evidence that biomotion effectively enhances conspicuity of road workers at open-road work sites.
Resumo:
This paper presents a general methodology for learning articulated motions that, despite having non-linear correlations, are cyclical and have a defined pattern of behavior Using conventional algorithms to extract features from images, a Bayesian classifier is applied to cluster and classify features of the moving object. Clusters are then associated in different frames and structure learning algorithms for Bayesian networks are used to recover the structure of the motion. This framework is applied to the human gait analysis and tracking but applications include any coordinated movement such as multi-robots behavior analysis.
Resumo:
Condition monitoring of diesel engines can prevent unpredicted engine failures and the associated consequence. This paper presents an experimental study of the signal characteristics of a 4-cylinder diesel engine under various loading conditions. Acoustic emission, vibration and in-cylinder pressure signals were employed to study the effectiveness of these techniques for condition monitoring and identifying symptoms of incipient failures. An event driven synchronous averaging technique was employed to average the quasi-periodic diesel engine signal in the time domain to eliminate or minimize the effect of engine speed and amplitude variations on the analysis of condition monitoring signal. It was shown that acoustic emission (AE) is a better technique than vibration method for condition monitor of diesel engines due to its ability to produce high quality signals (i.e., excellent signal to noise ratio) in a noisy diesel engine environment. It was found that the peak amplitude of AE RMS signals correlating to the impact-like combustion related events decreases in general due to a more stable mechanical process of the engine as the loading increases. A small shift in the exhaust valve closing time was observed as the engine load increases which indicates a prolong combustion process in the cylinder (to produce more power). On the contrary, peak amplitudes of the AE RMS attributing to fuel injection increase as the loading increases. This can be explained by the increase fuel friction caused by the increase volume flow rate during the injection. Multiple AE pulses during the combustion process were identified in the study, which were generated by the piston rocking motion and the interaction between the piston and the cylinder wall. The piston rocking motion is caused by the non-uniform pressure distribution acting on the piston head as a result of the non-linear combustion process of the engine. The rocking motion ceased when the pressure in the cylinder chamber stabilized.
Resumo:
Emotions are inherently social, and are central to learning, online interaction and literacy practices (Shen, Wang, & Shen, 2009). Demonstrating the dynamic sociality of literacy practice, we used e-motion diaries or web logs to explore the emotional states of pre-service high school teachers’ experiences of online learning activities. This is because the methods of communication used by university educators in online learning and writing environments play an important role in fulfilling students’ need for social interaction and inclusion (McInnerney & Roberts, 2004). Feelings of isolation and frustration are common emotions experienced by students in many online learning environments, and are associated with the success or failure of online interactions and learning (Su, et al., 2005). The purpose of the study was to answer the research question: What are the trajectories of pre-service teachers’ emotional states during online learning experiences? This is important because emotions are central to learning, and the current trend toward Massive Open Online Courses (MOOCs) needs research about students’ emotional connections in online learning environments (Kop, 2011). The project was conducted with a graduate class of 64 high school science pre-service teachers in Science Education Curriculum Studies in a large Australian university, including males and females from a variety of cultural backgrounds, aged 22-55 years. Online activities involved the students watching a series of streamed live lectures for the first 5 weeks providing a varied set of learning experiences, such as viewing science demonstrations (e.g., modeling the use of discrepant events). Each week, students provided feedback on learning by writing and posting an e-motion diary or web log about their emotional response. Students answered the question: What emotions did you experience during this learning experience? The descriptive data set included 284 online posts, with students contributing multiple entries. Linguistic appraisal theory, following Martin and White (2005), was used to regroup the 22 different discrete emotions reported by students into the six main affect groups – three positive and three negative: unhappiness/happiness, insecurity/security, and dissatisfaction/satisfaction. The findings demonstrated that the pre-service teachers’ emotional responses to the streamed lectures tended towards happiness, security, and satisfaction within the typology of affect groups – un/happiness, in/security, and dis/satisfaction. Fewer students reported that the streamed lectures triggered negative feelings of frustration, powerlessness, and inadequacy, and when this occurred, it often pertained to expectations of themselves in the forthcoming field experience in classrooms. Exceptions to this pattern of responses occurred in relation to the fifth streamed lecture presented in a non-interactive slideshow format that compressed a large amount of content. Many students responded to the content of the lecture rather than providing their emotional responses to this lecture, and one student felt “completely disengaged”. The social practice of online writing as blogs enabled the students to articulate their emotions. The findings primarily contribute new understanding about students' wide range of differing emotional states, both positive and negative, experienced in response to streamed live lectures and other learning activities in higher education external coursework. The is important because the majority of previous studies have focused on particular negative emotions, such as anxiety in test taking. The research also highlights the potentials of appraisal theory for studying human emotions in online learning and writing.