878 resultados para Pattern Loads
Resumo:
This paper discusses the vibration characteristics of a concrete-steel composite multi-panel floor structure; the use of these structures is becoming more common. These structures have many desirable properties but are prone to excessive and complex vibration, which is not currently well understood. Existing design codes and practice guides provide generic advice or simple techniques that cannot address the complex vibration in these types of low-frequency structures. The results of this study show the potential for an adverse dynamic response from higher and multi-modal excitation influenced by human-induced pattern loading, structural geometry, and activity frequency. Higher harmonics of the load frequency are able to excite higher modes in the composite floor structure in addition to its fundamental mode. The analytical techniques used in this paper can supplement the current limited code and practice guide provisions for mitigating the impact of human-induced vibrations in these floor structures.
Resumo:
A method for prediction of the radiation pattern of N strongly coupled antennas with mismatched sources is presented. The method facilitates fast and accurate design of compact arrays. The prediction is based on the measured N-port S parameters of the coupled antennas and the N active element patterns measured in a 50 ω environment. By introducing equivalent power sources, the radiation pattern with excitation by sources with arbitrary impedances and various decoupling and matching networks (DMN) can be accurately predicted without the need for additional measurements. Two experiments were carried out for verification: pattern prediction for parasitic antennas with different loads and for antennas with DMN. The difference between measured and predicted patterns was within 1 to 2 dB.
Resumo:
Background Segmental biomechanics of the scoliotic spine are important since the overall spinal deformity is comprised of the cumulative coronal and axial rotations of individual joints. This study investigates the coronal plane segmental biomechanics for adolescent idiopathic scoliosis patients in response to physiologically relevant axial compression. Methods Individual spinal joint compliance in the coronal plane was measured for a series of 15 idiopathic scoliosis patients using axially loaded magnetic resonance imaging. Each patient was first imaged in the supine position with no axial load, and then again following application of an axial compressive load. Coronal plane disc wedge angles in the unloaded and loaded configurations were measured. Joint moments exerted by the axial compressive load were used to derive estimates of individual joint compliance. Findings The mean standing major Cobb angle for this patient series was 46°. Mean intra-observer measurement error for endplate inclination was 1.6°. Following loading, initially highly wedged discs demonstrated a smaller change in wedge angle, than less wedged discs for certain spinal levels (+ 2,+1,− 2 relative to the apex, (p < 0.05)). Highly wedged discs were observed near the apex of the curve, which corresponded to lower joint compliance in the apical region. Interpretation While individual patients exhibit substantial variability in disc wedge angles and joint compliance, overall there is a pattern of increased disc wedging near the curve apex, and reduced joint compliance in this region. Approaches such as this can provide valuable biomechanical data on in vivo spinal biomechanics of the scoliotic spine, for analysis of deformity progression and surgical planning.
Resumo:
Fringe tracking and fringe order assignment have become the central topics of current research in digital photoelasticity. Isotropic points (IPs) appearing in low fringe order zones are often either overlooked or entirely missed in conventional as well as digital photoelasticity. We aim to highlight image processing for characterizing IPs in an isochromatic fringe field. By resorting to a global analytical solution of a circular disk, sensitivity of IPs to small changes in far-field loading on the disk is highlighted. A local theory supplements the global closed-form solutions of three-, four-, and six-point loading configurations of circular disk. The local theoretical concepts developed in this paper are demonstrated through digital image analysis of isochromatics in circular disks subjected to three-and four-point loads. (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)
Resumo:
The Mar Menor is a coastal lagoon increasingly threatened by urban and agricultural pressures. The main watercourse draining into the lagoon is the Rambla del Albujón. A fortnightly campaign carried out over one annual cycle enabled us to characterize the treated urban sewage effluents and agricultural sources which contribute to the nutrient fluxes in the watercourse. Multivariate analysis provided information for establishing chemical signatures and for assessing the relative influence of the various sources on the water quality at the outlet. Mass balances were used to examine net gains and losses, and cross-correlations with rainfall to analyze climatic influence and control factors in the trends of the nutrient flux. The rainfall pattern was significantly cross-correlated with nitrate and phosphorus fluxes from agricultural sources, while fluctuations in the resident population explained the phosphorus flux trend in urban sources. 50% of dissolved inorganic nitrogen was from agricultural sources, while 70% of total phosphate and 91% of total organic carbon were from urban point sources. The net amounts of all the nutrients fell as a result of plant uptake and/or denitrification in the channel. The control of urban point sources (phosphorus-enriched) is suggested as a promptly action for improving the health of the coastal lagoon.
Resumo:
Objectives: To investigate plantar pressure distribution in individuals with and without Patellofemoral Pain Syndrome during the Support phase of stair descent. Design: Observational case-control study. Participants: 30 Young adults With Patellofemoral Pain Syndrome and 44 matched controls. Main outcome measures: Contact area, peak pressure and pressure-time integral (Novel Pedar-X system) were evaluated in six plantar areas (medial, central and lateral rearfoot: midfoot; medial and lateral forefoot) during stair descent. Results: Contact area was greater in the Patellofemoral Pain Syndrome Group at medial rearfoot (p = 0.019) and midfoot (p < 0.001). Subjects with Patellofemoral pain Syndrome presented smaller peak pressures (p < 0.001). Conclusion: The pattern of plantar pressure distribution during stair descent in Patellofemoral Pain Syndrome Subjects was different from controls. This seems to be related to greater medial rearfoot and midfoot Support. Smaller plantar loads found in Patellofemoral Pain Syndrome subjects during stair descent reveal a more Cautious motor pattern in a challenging task. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper presents the first comprehensive analysis of sediment and dissolved load across an entire mountain range. We investigate patterns and rates of modern denudation of the European Alps based on a compilation of data about river loads and reservoir sedimentation from 202 drainage basins that are between ca. 1 to 10,000 km2 large. The study basins cover about 50% of the total area of the Alps. Modern glaciated basins have the highest sediment yields of up to 7000 t km− 2 a− 1, which are on average 5 to 10 times higher than in non-glaciated basins. Likewise sediment yield and glacial cover are positively correlated. Instead, relief is a relatively weak predictor of sediment yield. The strong glacial impact in the correlations is due to glacier recession since the 19th century as well as due to glacial conditioning during repeated Quaternary glaciations which have produced the strong transient state of the Alpine landscape. We suggest that this is the major cause for ca. 3 fold enhanced denudation of the western compared to the eastern Alps. Chemical denudation rates are highest in the external Alps dominated by carbonate sedimentary rocks, where they make up about one third of total denudation. The high rates cannot be explained without anhydrite dissolution. We estimated that only 45% of the sediments mobilized in headwaters are exported out off the Alps, most sediments being trapped in artificial reservoirs. The total amount of sediment annually trapped within the Alps equates to 43 Mt. When corrected for sediment storage, we obtain an area-weighted mean total denudation rate for the Alps of about 0.32 mm a− 1. The pre-dam rate might be as high as 0.42 mm a− 1. In total, ca. 35 plus 23 Mt of mass are exported each year out of the Alps as solids and solutes, respectively. These rates are not enough to out pace modern rock uplift. Nevertheless, pattern of sediment yield across the Alps coincides roughly with the intensity of glacial conditioning and modern rock uplift, supporting the hypothesis of an erosion-driven uplift of the Alps.
Resumo:
Wind-flow pattern over embankments involves an overexposure of the rolling stock travelling on them to wind loads. Windbreaks are a common solution for changing the flow characteristic in order to decrease unwanted effects induced by the presence of crosswind. The shelter effectiveness of a set of windbreaks placed over a railway twin-track embankment is experimentally analysed. A set of two-dimensional wind tunnel tests are undertaken and results corresponding to pressure tap measurements over a section of a typical high-speed train are herein presented.The results indicate that even small-height windbreaks provide sheltering effects to the vehicles. Also, eaves located at the windbreak tips seem to improve their sheltering effect.
Resumo:
National Bureau of Standards, Tire Systems Section, Washington, D.C.
Resumo:
Enterprise Application Integration (EAI) is a challenging area that is attracting growing attention from the software industry and the research community. A landscape of languages and techniques for EAI has emerged and is continuously being enriched with new proposals from different software vendors and coalitions. However, little or no effort has been dedicated to systematically evaluate and compare these languages and techniques. The work reported in this paper is a first step in this direction. It presents an in-depth analysis of a language, namely the Business Modeling Language, specifically developed for EAI. The framework used for this analysis is based on a number of workflow and communication patterns. This framework provides a basis for evaluating the advantages and drawbacks of EAI languages with respect to recurrent problems and situations.