6 resultados para Patiriella


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determination of the ash-free dry weight (AFDW) of marine specimens requires samples to be rinsed, soaked, and centrifuged. Problems associated with this technique were examined with the developmental stages of seastar species (Patiriella) with different modes of development. The influence of three rinsing solutions (ammonium formate [AF], filtered seawater [FSW], and reverse osmosis water [RO]) was assessed. The hypothesis that the AFDW technique is a measure of organic material was addressed by drying inorganic salts. Developmental stages of Patiriella calcar rinsed in FSW were twice as heavy as those rinsed in RO or AE indicating that samples should be rinsed in RO or AF before weighing. Soaking treatments had a significant effect on the AFDW of samples of P. calcar (planktonic developer), indicating that the rinsing period should be brief. Zygotes of Patiriella re gularis (planktonic developer) were significantly heavier than ova or gastrulae, regardless of treatment. In contrast, there were no significant differences in the AFDW of any stages or treatments of Patiriella exigua (benthic developer). This may be due to the presence of a modified fertilization envelope, which protects these benthic embryos. Inorganic salts with water of crystallization and FSW lost 20-75% and 14% of their dry weight, respectively, after ashing. We propose that salt ions may retain water, which does not evaporate during drying but is lost during ashing, resulting in the overestimation of sample AFDW. If a similar process occurs in the developmental stages of marine invertebrates, changes in the intracellular ionic composition through development may result in inaccurate estimates of biomass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification, as a result of increased atmospheric CO2, has the potential to adversely affect the larval stages of many marine organisms and hence have profound effects on marine ecosystems. This is the first study of its kind to investigate the effects of ocean acidification on the early life-history stages of three echinoderms species, two asteroids and one irregular echinoid. Potential latitudinal variations on the effects of ocean acidification were also investigated by selecting a polar species (Odontaster validus), a temperate species (Patiriella regularis), and a tropical species (Arachnoides placenta). The effects of reduced seawater pH levels on the fertilization of gametes, larval survival and morphometrics on the aforementioned species were evaluated under experimental conditions. The pH levels considered for this research include ambient seawater (pH 8.1 or pH 8.2), levels predicted for 2100 (pH 7.7 and pH 7.6) and the extreme pH of 7.0, adjusted by bubbling CO2 gas into filtered seawater. Fertilization for Odontaster validus and Patiriella regularis for the predicted scenarios for 2100 was robust, whereas fertilization was significantly reduced in Arachnoides placenta. Larval survival was robust for the three species at pH 7.8, but numbers declined when pH dropped below 7.6. Normal A. placenta larvae developed in pH 7.8, whereas smaller larvae were observed for O. validus and P. regularis under the same pH treatment. Seawater pH levels below 7.6 resulted in smaller and underdeveloped larvae for all three species. The greatest effects were expected for the Antarctic asteroid O. validus but overall the tropical sand dollar A. placenta was the most affected by the reduction in seawater pH. The effects of ocean acidification on the asteroids O. validus and P. regulars, and the sand dollar A. placenta are species-specific. Several parameters, such as taxonomic differences, physiology, genetic makeup and the population's evolutionary history may have contributed to this variability. This study highlights the vulnerability of the early developmental stages and the complexity of ocean acidification. However, future research is needed to understand the effects at individual, community and ecosystem levels.