14 resultados para Pathovars
Resumo:
Xylella fastidiosa is a Gram negative plant pathogen causing many economically important diseases, and analyses of completely sequenced X. fastidiosa genome strains allowed the identification of many prophage-like elements and possibly phage remnants, accounting for up to 15% of the genome composition. To better evaluate the recent evolution of the X. fastidiosa chromosome backbone among distinct pathovars, the number and location of prophage-like regions on two finished genomes (9a5c and Temecula1), and in two candidate molecules (Ann1 and Dixon) were assessed. Based on comparative best bidirectional hit analyses, the majority (51%) of the predicted genes in the X. fastidiosa prophage-like regions are related to structural phage genes belonging to the Siphoviridae family. Electron micrograph reveals the existence of putative viral particles with similar morphology to lambda phages in the bacterial cell in planta. Moreover, analysis of microarray data indicates that 9a5c strain cultivated under stress conditions presents enhanced expression of phage anti-repressor genes, suggesting switches from lysogenic to lytic cycle of phages under stress-induced situations. Furthermore, virulence-associated proteins and toxins are found within these prophage-like elements, thus suggesting an important role in host adaptation. Finally, clustering analyses of phage integrase genes based on multiple alignment patterns reveal they group in five lineages, all possessing a tyrosine recombinase catalytic domain, and phylogenetically close to other integrases found in phages that are genetic mosaics and able to perform generalized and specialized transduction. Integration sites and tRNA association is also evidenced. In summary, we present comparative and experimental evidence supporting the association and contribution of phage activity on the differentiation of Xylella genomes.
Resumo:
Xanthomonas axonopodis pv. passiflorae causes bacterial spot in passion fruit. It attacks the purple and yellow passion fruit as well as the sweet passion fruit. The diversity of 87 isolates of pv. passiflorae collected from across 22 fruit orchards in Brazil was evaluated using molecular profiles and statistical procedures, including an unweighted pair-group method with arithmetical averages-based dendrogram, analysis of molecular variance (AMOVA), and an assigning test that provides information on genetic structure at the population level. Isolates from another eight pathovars were included in the molecular analyses and all were shown to have a distinct repetitive sequence-based polymerase chain reaction profile. Amplified fragment length polymorphism technique revealed considerable diversity among isolates of pv. passiflorae, and AMOVA showed that most of the variance (49.4%) was due to differences between localities. Cluster analysis revealed that most genotypic clusters were homogeneous and that variance was associated primarily with geographic origin. The disease adversely affects fruit production and may kill infected plants. A method for rapid diagnosis of the pathogen, even before the disease symptoms become evident, has value for producers. Here, a set of primers (Xapas) was designed by exploiting a single-nucleotide polymorphism between the sequences of the intergenic 16S-23S rRNA spacer region of the pathovars. Xapas was shown to effectively detect all pv. passiflorae isolates and is recommended for disease diagnosis in passion fruit orchards.
Resumo:
Bacterial canker of grapevine (Vitis vinifera), caused by Xanthomonas campestris pv. viticola was first detected in Brazil in 1998, affecting grapevines in the São Francisco river basin, state of Pernambuco. The disease was also reported in Juazeiro, Bahia and later in Piauí and Ceará. Due to its limited geographical distribution and relatively recent detection in Brazil, very little is known about the pathogen's biology and diversity. Repetitive DNA based-PCR (rep-PCR) profiles were generated from purified bacterial DNA of 40 field strains of X. campestris pv. viticola, collected between 1998 and 2001 in the states of Pernambuco, Bahia and Piauí. Combined analysis of the PCR patterns obtained with primers REP, ERIC and BOX, showed a high degree of similarity among Brazilian strains and the Indian type strain NCPPB 2475. Similar genomic patterns with several diagnostic bands, present in all strains, could be detected. Fingerprints were distinct from those of strains representing other pathovars and from a yellow non-pathogenic isolate from grape leaves. The polymorphism observed among the Brazilian strains allowed their separation into five subgroups, although with no correlation with cultivar of origin, geographic location or year collected.
Resumo:
The pPT23A plasmid family of Pseudomonas syringae contains members that contribute to the ecological and pathogenic fitness of their P. syringae hosts. In an effort to understand the evolution of these plasmids and their hosts, we undertook a comparative analysis of the phylogeny of plasmid genes and that of conserved chromosomal genes from P. syringae. In total, comparative sequence and phylogenetic analyses were done utilizing 47 pPT23A family plasmids (PFPs) from 16 pathovars belonging to six genomospecies. Our results showed that the plasmid replication gene (repA), the only gene currently known to be distributed among all the PFPs, had a phylogeny that was distinct from that of the P. syringae hosts of these plasmids and from those of other individual genes on PFPs. The phylogenies of two housekeeping chromosomal genes, those for DNA gyrase B subunit (gyrB) and primary sigma factor (rpoD), however, were strongly associated with genomospecies of P. syringae. Based on the results from this study, we conclude that the pPT23A plasmid family represents a dynamic genome that is mobile among P. syringae pathovars.
Resumo:
A recently emerging bleeding canker disease, caused by Pseudomonas syringae pathovar aesculi (Pae), is threatening European horse chestnut in northwest Europe. Very little is known about the origin and biology of this new disease. We used the nucleotide sequences of seven commonly used marker genes to investigate the phylogeny of three strains isolated recently from bleeding stem cankers on European horse chestnut in Britain (E-Pae). On the basis of these sequences alone, the E-Pae strains were identical to the Pae type-strain (I-Pae), isolated from leaf spots on Indian horse chestnut in India in 1969. The phylogenetic analyses also showed that Pae belongs to a distinct clade of P. syringae pathovars adapted to woody hosts. We generated genome-wide Illumina sequence data from the three E-Pae strains and one strain of I-Pae. Comparative genomic analyses revealed pathovar-specific genomic regions in Pae potentially implicated in virulence on a tree host, including genes for the catabolism of plant-derived aromatic compounds and enterobactin synthesis. Several gene clusters displayed intra-pathovar variation, including those encoding type IV secretion, a novel fatty acid biosynthesis pathway and a sucrose uptake pathway. Rates of single nucleotide polymorphisms in the four Pae genomes indicate that the three E-Pae strains diverged from each other much more recently than they diverged from I-Pae. The very low genetic diversity among the three geographically distinct E-Pae strains suggests that they originate from a single, recent introduction into Britain, thus highlighting the serious environmental risks posed by the spread of an exotic plant pathogenic bacterium to a new geographic location. The genomic regions in Pae that are absent from other P. syringae pathovars that infect herbaceous hosts may represent candidate genetic adaptations to infection of the woody parts of the tree.
Resumo:
Thirty-eight bacterial strains isolated from hazelnut (Corylus avellana) cv. Tonda Gentile delle Langhe showing a twig dieback in Piedmont and Sardinia, Italy, were studied by a polyphasic approach. All strains were assessed by fatty acids analysis and repetitive sequence-based polymerase chain reaction (PCR) fingerprinting using BOX and ERIC primer sets. Representative strains also were assessed by sequencing the 16S rDNA and hrpL genes, determining the presence of the syrB gene, testing their biochemical and nutritional characteristics, and determining their pathogenicity to hazelnut and other plants species or plant organs. Moreover, they were compared with reference strains of other phytopathogenic pseudomonads. The strains from hazelnut belong to Pseudomonas syringae (sensu latu), LOPAT group Ia. Both fatty acids and repetitive-sequence-based PCR clearly discriminate such strains from other Pseudomonas spp., including P. avellanae and other P. syringae pathovars as well as P. syringae pv. syringae strains from hazelnut. Also, the sequencing of 16S rDNA and hrpL genes differentiated them from P. avellanae and from P. syringae pv. syringae. They did not possess the syrB gene. Some nutritional tests also differentiated them from related P. syringae pathovars. Upon artificial inoculation, these strains incited severe twig diebacks only on hazelnut. Our results justify the creation of a new pathovar because the strains from hazelnut constitute a homogeneous group and a discrete phenon. The name of P. syringae pv. coryli is proposed and criteria for routine identification are presented.
Resumo:
Background Pseudomonas syringae can cause stem necrosis and canker in a wide range of woody species including cherry, plum, peach, horse chestnut and ash. The detection and quantification of lesion progression over time in woody tissues is a key trait for breeders to select upon for resistance. Results In this study a general, rapid and reliable approach to lesion quantification using image recognition and an artificial neural network model was developed. This was applied to screen both the virulence of a range of P. syringae pathovars and the resistance of a set of cherry and plum accessions to bacterial canker. The method developed was more objective than scoring by eye and allowed the detection of putatively resistant plant material for further study. Conclusions Automated image analysis will facilitate rapid screening of material for resistance to bacterial and other phytopathogens, allowing more efficient selection and quantification of resistance responses.
Resumo:
Bacterial cultures of cloaca swabs from 86 captivity kept psittacidaes revealed 17 Escherichia coli bearing birds sharing strains which, on the basis of enterobacterial repetitive intergenic consensus (ERIC) PCR analysis, proved to be genetically similar. Further, triplex PCR specific for the genetic markers chuA, yjaA, and TSPE4.C2 was used to assign the strains to the E. coli reference collection (EcoR) B2 group. One strain of each, from the enteropathogenic (EPEC), enteroaggregative (EAEC) and Shiga toxin (STEC) E. coli pathovars were found among these isolates. © Marietto-Gonçalves et al.; Licensee Bentham Open.
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Abstract Background Xanthomonads are plant-associated bacteria responsible for diseases on economically important crops. Xanthomonas fuscans subsp. fuscans (Xff) is one of the causal agents of common bacterial blight of bean. In this study, the complete genome sequence of strain Xff 4834-R was determined and compared to other Xanthomonas genome sequences. Results Comparative genomics analyses revealed core characteristics shared between Xff 4834-R and other xanthomonads including chemotaxis elements, two-component systems, TonB-dependent transporters, secretion systems (from T1SS to T6SS) and multiple effectors. For instance a repertoire of 29 Type 3 Effectors (T3Es) with two Transcription Activator-Like Effectors was predicted. Mobile elements were associated with major modifications in the genome structure and gene content in comparison to other Xanthomonas genomes. Notably, a deletion of 33 kbp affects flagellum biosynthesis in Xff 4834-R. The presence of a complete flagellar cluster was assessed in a collection of more than 300 strains representing different species and pathovars of Xanthomonas. Five percent of the tested strains presented a deletion in the flagellar cluster and were non-motile. Moreover, half of the Xff strains isolated from the same epidemic than 4834-R was non-motile and this ratio was conserved in the strains colonizing the next bean seed generations. Conclusions This work describes the first genome of a Xanthomonas strain pathogenic on bean and reports the existence of non-motile xanthomonads belonging to different species and pathovars. Isolation of such Xff variants from a natural epidemic may suggest that flagellar motility is not a key function for in planta fitness.
Resumo:
The Bs2 resistance gene of pepper specifically recognizes and confers resistance to strains of Xanthomonas campestris pv. vesicatoria that contain the corresponding bacterial avirulence gene, avrBs2. The involvement of avrBs2 in pathogen fitness and its prevalence in many X. campestris pathovars suggests that the Bs2 gene may be durable in the field and provide resistance when introduced into other plant species. Employing a positional cloning strategy, the Bs2 locus was isolated and the gene was identified by coexpression with avrBs2 in an Agrobacterium-mediated transient assay. A single candidate gene, predicted to encode motifs characteristic of the nucleotide binding site–leucine-rich repeat class of resistance genes, was identified. This gene specifically controlled the hypersensitive response when transiently expressed in susceptible pepper and tomato lines and in a nonhost species, Nicotiana benthamiana, and was designated as Bs2. Functional expression of Bs2 in stable transgenic tomatoes supports its use as a source of resistance in other Solanaceous plant species.
Resumo:
Symptoms associated with pistachio dieback in Australia include decline (little or no current season growth), xylem staining in shoots two or more years old, trunk mu and limb lesions (often covered by black, superficial fungal growth), excessive exudation of resin, dieback and death of the tree. Bacteria belonging to the genus Xanthomonas have been suggested as the causal agent. To confirm the constant association between these bacteria and the disease syndrome, the absence of other pathogens and the identity of the pathogen, we performed a series of isolations and pathogenicity tests. The only microorganism consistently isolated from diseased tissue was a bacterium that produced yellow, mucoid colonies and displayed morphological and cultural characteristics typical of the genus Xanthomonas. Database comparisons of the fatty acid and whole-cell protein profiles of five representative pistachio isolates indicated that they all belonged to X. translucens, but it was not possible to allocate the isolates to pathovar. Pathogenicity tests on cereals and grasses supported this identification. However, Koch's postulates have been only partially fulfilled because not all symptoms associated with pistachio dieback were reproduced on inoculated two-year-old pistachio trees. While discolouration was observed, dieback, excessive resinous exudate and trunk and limb lesions were not produced; expression of these symptoms may be delayed, and long-term monitoring of a small number of inoculated trees is in progress.