35 resultados para Pathfinding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We developed a system for time-lapse observation of identified neurons in the central nervous system (CNS) of the Drosophila embryo. Using this system, we characterize the dynamics of filopodia and axon growth of the motorneuron RP2 as it navigates anteriorly through the CNS and then laterally along the intersegmental nerve (ISN) into the periphery. We find that both axonal extension and turning occur primarily through the process of filopodial dilation. In addition, we used the GAL4-UAS system to express the fusion protein Tau-GFP in a subset of neurons, allowing us to correlate RP2's patterns of growth with a subset of axons in its environment. In particular, we show that RP2's sharp lateral turn is coincident with the nascent ISN. (C) 1998 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A scaffold of axons consisting of a pair of longitudinal tracts and several commissures is established during early development of the vertebrate brain. We report here that NOC-2, a cell surface carbohydrate, is selectively expressed by a subpopulation of growing axons in this scaffold in Xenopus. NOC-2 is present on two glycoproteins, one of which is a novel glycoform of the neural cell adhesion molecule N-CAM. When the function of NOC-2 was perturbed using either soluble carbohydrates or anti-NOC-2 antibodies, axons expressing NOC-2 exhibited aberrant growth at specific points in their pathway. NOC-2 is the first-identified axon guidance molecule essential for development of the axon scaffold in the embryonic vertebrate brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Major outputs of the neocortex are conveyed by corticothalamic axons (CTAs), which form reciprocal connections with thalamocortical axons, and corticosubcerebral axons (CSAs) headed to more caudal parts of the nervous system. Previous findings establish that transcriptional programs define cortical neuron identity and suggest that CTAs and thalamic axons may guide each other, but the mechanisms governing CTA versus CSA pathfinding remain elusive. Here, we show that thalamocortical axons are required to guide pioneer CTAs away from a default CSA-like trajectory. This process relies on a hold in the progression of cortical axons, or waiting period, during which thalamic projections navigate toward cortical axons. At the molecular level, Sema3E/PlexinD1 signaling in pioneer cortical neurons mediates a "waiting signal" required to orchestrate the mandatory meeting with reciprocal thalamic axons. Our study reveals that temporal control of axonal progression contributes to spatial pathfinding of cortical projections and opens perspectives on brain wiring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The corpus callosum is a large fiber tract that connects neurons in the right and left cerebral hemispheres. Agenesis of the corpus callosum (ACC) is associated with a large number of human syndromes but little is known about why ACC occurs. In most cases of ACC, callosal axons are able to grow toward the midline but are unable to cross it, continuing to grow into large swirls of axons known as Probst bundles. This phenotype suggests that in some cases ACC may be due to defects in axonal guidance at the midline. General guidance mechanisms that influence the development of axons include chemoattraction and chemorepulsion, presented by either membrane-bound or diffusible molecules. These molecules are not only expressed by the final target but by intermediate targets along the pathway, and by pioneering axons that act as guides for later arriving axons. Midline glial populations are important intermediate targets for commissural axons in the spinal cord and brain, including the corpus callosum. The role of midline glial populations and pioneering axons in the formation of the corpus callosum are discussed. Finally the differential guidance of the ipsilaterally projecting perforating pathway and the contralaterally projecting corpus callosum is addressed. Development of the corpus callosum involves the coordination of a number of different guidance mechanisms and the probable involvement of a large number of molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die Neurogenese und axonale Wegfindung sind in den vergangenen Jahrzehnten Thema einer Vielzahl wissenschaftlicher Untersuchungen in den verschiedensten Organismen gewesen. Die zusammengetragenen Daten in Insekten und Crustaceen geben eine gute Übersicht darüber, wie das Nervensystem in Arthropoden aufgebaut wird. Die entwicklungsbiologischen Prozesse, die daran beteiligt sind, sind in den beiden genannten Gruppen sehr gut verstanden. In den Gruppen der Cheliceraten und Myriapoden jedoch wurden ähnliche Analysen bisher kaum durchgeführt. Das Hauptanliegen dieser Arbeit war es daher, Mechanismen in den Spinnen Achaearanea tepidariorum und Cupiennius salei, zwei Vertretern der Cheliceraten, zu untersuchen, die eine Rolle im Leitsystem der ventralen Mittellinie und bei der axonalen Wegfindung spielen. Eine Vorraussetzung hierfür sind Kenntnisse über die Architektur des Zentralnervensystems. In einem ersten Schritt beschrieb ich daher grundlegend die Morphologie des Nervensystems im Verlauf der gesamten Embryoalentwicklung. Ich konnte zeigen, dass in Spinnen ein für Arthropoden typisches Strickleiternervensystem gebildet wird. Dieses wird von segmental angelegten Neuronen geformt, wobei sowohl Gruppen von Zellen als auch einzelne Neurone daran beteiligt sind, die primären axonalen Trakte zu etablieren. Im Besonderen konnte ich eine Zelle identifizieren, die in Position, Projektionsmuster und der Expression des Markergens even-skipped vergleichbar zum PR2 Neuron in Drosophila ist, welches die posteriore Wurzel des Segmentalnervs anlegt.rnrnIn einem zweiten Ansatz untersuchte ich die ventrale Mittellinie in Spinnen im Bezug auf ihre mögliche Funktion in der axonalen Wegfindung. Es konnte gezeigt werden, dass es sich beim Epithel der Mittellinie, das die Lücke zwischen beiden Keimstreifhälften während des gesamten Prozesses der Inversion überspannt, um eine transiente Struktur handelt, die keine neuralen Zellen hervorbringt. Es ist daher vergleichbar mit der so genannten Floor plate in Vertebraten, die ebenfalls nur vorübergehend existiert. Die Untersuchung von single minded (sim) zeigte, dass es, anders als in Drosophila, wo sim ein wichtiges regulatorisches Gen für die korrekte Spezifizierung von Mittellinienzellen ist, nicht in den Zellen der Mittellinie, sondern in diesen benachbarten Zellen, exprimiert wird. Das ist vergleichbar mit Vertebraten. Zusätzlich konnte ich Expression von sim an den Basen der Gliedmassen und im Kopf nachweisen. Wie in Vertebraten könnte sim an der Musterbildung dieser Gewebe beteiligt sein. Dennoch spielt die Mittellinie in Spinnen eine wichtige Rolle als Organisator für auswachsende, kommissurale Axone. Diese Funktion teilt sie mit anderen Invertebraten und Vertebraten.rnrnDie Signaltransduktionskaskade, die an der axonalen Wegfindung an der Mittellinie beteiligt ist, ist in den verschiedensten Organismen hoch konserviert. In der vorliegenden Arbeit konnte ich sowohl in Achaearanea als auch in Cupiennius ein netrin Homolog identifizieren und eine konservierte Funktion des Wegfindungsmoleküls während der Bildung der Kommissuren aufzeigen. RNAi Experimente belegen, dass, wird die Funktion von netrin herunterreguliert, das Strickleiternervensystem nicht korrekt gebildet wird, ins Besondere die kommissuralen Faszikel. Des Weiteren konnte ich eine neue Funktion von netrin, die bisher in anderen Organsimen noch nicht beschrieben wurde, identifizieren. Neben seiner Rolle in der axonalen Wegfindung, scheint netrin auch an der epithelialen Morphogenese im zentralen Nervensystem beteiligt zu sein. In dieser Funktion scheint netrin in Gliazellen, die die epithelialen Vesikel der Invaginationsgruppen umhüllen, wichtig zu sein, um neurale Vorläuferzellen in einem undifferenzierten Zustand zu halten. Der Abbau von netrin Transkript durch RNA Interferenz führt zu einer verfrühten Segregation neuraler Vorläuferzellen aus dem epithelialen Verband der Invaginationsgruppen und zu einer Zunahme an Zellen, die den frühen Differenzierungsmarker islet exprimieren.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary sensory neurons in the vertebrate olfactory systems are characterised by the differential expression of distinct cell surface carbohydrates. We show here that the histo-blood group H carbohydrate is expressed by primary sensory neurons in both the main and accessory olfactory systems while the blood group A carbohydrate is expressed by a subset of vomeronasal neurons in the developing accessory olfactory system. We have used both loss-of-function and gain-of-function approaches to manipulate expression of these carbohydrates in the olfactory system. In null mutant mice lacking the alpha(1,2)fucosyltransferase FUT1, the absence of blood group H carbohydrate resulted in the delayed maturation of the glomerular layer of the main olfactory bulb. In addition, ubiquitous expression of blood group A on olfactory axons in gain-of-function transgenic mice caused mis-routing of axons in the glomerular layer of the main olfactory bulb and led to exuberant growth of vomeronasal axons in the accessory olfactory bulb. These results provide in vivo evidence for a role of specific cell surface carbohydrates during development of the olfactory nerve pathways. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Members of the Wnt family and their receptors, the Frizzleds, are key regulators of pivotal developmental processes including embryonic patterning, specification of cell fate, and determination of cell polarity. The versatility and complexity of Wnt signaling has been further highlighted by the emergence of a novel family of Wnt receptors, the Ryk family. In mammals and flies, Ryk is a key chemorepulsive axon guidance receptor responsible for the establishment of important axon tracts during nervous system development. Although the function of Ryk is currently best understood with respect to this role, its widespread expression, both in developing tissues and in the adult, suggests that Ryk may regulate many essential biological processes. This hypothesis is supported by the multiple developmental phenotypes apparent in Ryk loss-of-function mice. These mice display a variety of embryonic abnormalities, including disruption of skeletal, craniofacial and cardiac development. Here we review Ryk structure and function focusing on its activity as an axon guidance receptor. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chondroitin sulfate proteoglycans display both inhibitory and stimulatory effects on cell adhesion and neurite outgrowth in vitro. The functional activity of these proteoglycans appears to be context specific and dependent on the presence of different chondroitin sulfate-binding molecules. Little is known about the role of chondroitin sulfate proteoglycans in the growth and guidance of axons in vivo. To address this question, we examined the effects of exogenous soluble chondroitin sulfates on the growth and guidance of axons arising from a subpopulation of neurons in the vertebrate brain which express NOC-2, a novel glycoform of the neural cell adhesion molecule N-CAM. Intact brains of stage 28 Xenopus embryos were unilaterally exposed to medium containing soluble exogenous chondroitin sulfates. When exposed to chondroitin sulfate, NOC-2(+) axons within the tract of the postoptic commissure failed to follow their normal trajectory across the ventral midline via the ventral commissure in the midbrain. Instead, these axons either stalled or grew into the dorsal midbrain or continued growing longitudinally within the ventral longitudinal tract. These findings suggest that chondroitin sulfate proteoglycans indirectly modulate the growth and guidance of a subpopulation of forebrain axons by regulating either matrix-bound or cell surface cues at specific choice points within the developing vertebrate brain. (C) 1998 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SUBPOPULATIONS of olfactory receptor neurons, which are dispersed throughout the olfactory neuroepithelium, express specific cell surface carbohydrates and project to discrete regions of the olfactory bulb. Cell surface carbohydrates such as N-acetyl-lactosamine have been postulated to mediate sorting and selective fasciculation of discrete axon subpopulations during development of the olfactory pathway. Substrate-bound N-acetyl-lactosamine promotes neurite outgrowth by both clonal olfactory receptor neuron cell lines and olfactory receptor neurons in vitro, indicating that cell surface carbohydrates may be ligands for receptor-mediated stimulation of axon growth in vivo. In the present study, the role of transmembrane signaling in N-acetyl-lactosamine-stimulated neurite outgrowth was examined in the clonal olfactory neuron cell line 4.4.2. Substrate-bound N-acetyl-lactosamine stimulated neurite outgrowth which was specifically inhibited by antagonists to N- and L-type calcium channels and to tyrosine kinase phosphorylation. These results indicate that N-acetyl-lactosamine can evoke transmembrane receptor-mediated responses capable of influencing neurite outgrowth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Each abdominal hemisegment of the Drosophila embryo has two sensory neurons intimately associated with a tracheal branch. During embryogenesis, the axons of these sensory neurons, termed the v'td2 neurons, enter the CNS and grow toward the brain with a distinctive pathway change in the third thoracic neuromere. We show that the axons use guidance cues that are under control of the bithorax gene complex (BX-C). Pathway defects in mutants suggest that a drop in Ultrabithorax expression permits the pathway change in the T3 neuromere, while combined Ultrabithorax and abdominal-A expression represses it in the abdominal neuromeres. We propose that the axons do not respond to a particular segmental identity in forming the pathway change; rather they respond to pathfinding cues that come about as a result of a drop in BX-C expression along the antero-posterior axis of the CNS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Eph and ephrin system, consisting of fourteen Eph receptor tyrosine kinase proteins and nine ephrin membrane proteins in vertebrates, has been implicated in the regulation of many critical events during development. Binding of cell surface Eph and ephrin proteins results in bi-directional signals, which regulate the cytoskeletal, adhesive and motile properties of the interacting cells. Through these signals Eph and ephrin proteins are involved in early embryonic cell movements, which establish the germ layers, cell movements involved in formation of tissue boundaries and the pathfinding of axons. This review focuses on two vertebrate models, the zebrafish and mouse, in which experimental perturbation of Eph and/or ephrin expression in vivo have provided important insights into the role and functioning of the Eph/ephrin system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

hlx1 is a related homeobox gene expressed in a dynamic spatiotemporal expression pattern during development of the zebrafish brain. The homologues of hlx1, mouse dbx1 and Xenopus Xdbx, are known to play a role in the specification of neurons in the spinal cord. However, the role of these molecules in the brain is less well known. We have used two different approaches to elucidate a putative function for hlx1 in the developing zebrafish brain. Blastomeres were injected with either synthetic hlx1 mRNA in gain-of-function experiments or with antisense morpholino oligonucleotides directed against hlx1 in loss-of-function experiments. Mis-expression of hlx1 produced severe defects in brain morphogenesis as a result of abnormal ventricle formation, a phenotype we referred to as fused-brain. These animals also showed a reduction in the size of forebrain neuronal clusters as well as abnormal axon pathfinding. hlx1 antisense morpholinos specifically perturbed hindbrain morphogenesis leading to defects in the integrity of the neuroepithelium. While hindbrain patterning was in the most part unaffected there were select disruptions to the expression pattern of the neurogenic gene Zash1B in specific rhombomeres. Our results indicate multiple roles for hlx1 during zebrafish brain morphogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Approximately half of the motoneurons generated during normal embryonic development undergo programmed cell death. Most of this death occurs during the time when synaptic connections are being formed between motoneurons and their target, skeletal muscle. Subsequent muscle activity stemming from this connection helps determine the final number of surviving motoneurons. These observations have given rise to the idea that motoneuron survival is dependent upon access to muscle derived trophic factors, presumably through intact neuromuscular synapses. However, it is not yet understood how the muscle regulates the supply of such trophic factors, or if there are additional mechanisms operating to control the fate of the innervating motoneuron. Recent observations have highlighted target independent mechanisms that also operate to support the survival of motoneurons, such as early trophic-independent periods of motoneuron death, trophic factors derived from Schwann cells and selection of motoneurons during pathfinding. Here we review recent investigations into motoneuron cell death when the molecular signalling between motoneurons and muscle has been genetically disrupted. From these studies, we suggest that in addition to trophic factors from muscle and/or Schwann cells, specific adhesive interactions between motoneurons and muscle are needed to regulate motoneuron survival. Such interactions, along with intact synaptic basal lamina, may help to regulate the supply and presentation of trophic factors to motoneurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The brain tissue is made of neuronal and glial cells generated in the germinal layer bordering the ventricles. These cells divide, differentiate and migrate following specific pathways. The specification of GABAergic interneurons and glutamatergic neurons has been broadly studied but little is known about the origin, the fate and the function of early glial cells in the embryonic telencephalon. It has been commonly accepted since long that the glial cells and more particularly the astrocytes were generated after neurogenesis from the dorsal telencephalon. However, our work shows that, unlike what was previously thought, numerous glial cells (astroglia and polydendrocytes) are generated during neurogenesis in the early embryonic stages from E14.5 to E16.5, and originate from the ventral Nkx2.1-expressing precursors instead. NK2 homeobox 1 (Nkx2.1) is a member of the NK2 family of homeodomaincontaining transcription factors. The specification of the MGE precursors requires the expression of the Nkx2.1 homeobox gene. Moreover, Nkx2.1 is previously known to regulate the specification of GABAergic interneurons and early oligodendrocytes in the ventral telencephalon. Here, in my thesis work, I have discovered that, in addition, Nkx2.1 also regulates astroglia and polydendrocytes differentiation. The use of Nkx2.1 antibody and Nkx2.1 riboprobe have revealed the presence of numerous Nkx2.1-positive cells that express astroglial markers (like GLAST and GFAP) in the entire embryonic brain. Thus, to selectively fate map MGE-derived GABAergic interneurons and glia, we crossed Nkx2.1-Cre mice, Glast-Cre ERT+/- inducible mice and NG2-Cre mice with the Cre reporter Rosa26-lox-STOP-lox-YFP (Rosa26-YFP) mice. The precise origin of Nkx2.1-positive astroglia has been directly ascertained by combining glial immunostaining and focal electroporation of the pCAG-GS-EGFP plasmids into the subpallial domains of organotypic slices, as well as, by using in vitro neurosphere experiments and in utero electroporation of the pCAG-GS-tomato plasmid into the ventral pallium of E14.5 Nkx2.1-Cre+/Rosa-YFP+/- embryos. We have, thus, confirmed that the three germinal regions of the ventral telencephalon i.e. the MGE, the AEP/POA and the triangular septal nucleus are able to generate early astroglial cells. Moreover, immunohistochemistry for several astroglial cells and polydendrocyte markers, both in the Nkx2.1-/- and control embryos and in the neurospheres, has revealed a severe loss of both glial cell types in the Nkx2.1 mutants. We found that the loss of glia corresponded to a decrease of Nkx2.1-derived precursor division capacity and glial differentiation. There was a drastic decrease of BrdU+ dividing cells labeled for Nkx2.1 in the MGE*, the POA* and the septal nucleus* of Nkx2.1 mutants. In addition, we noticed that while some remaining Nkx2.1+ precursors still succeeded to give rise to post-mitotic neurons in vitro and in vivo in the Nkx2.1-/-, they completely lost the capacity to differentiate in astrocytes. Altogether, these observations indicate for the first time that the transcription factor Nkx2.1 regulates the proliferation and differentiation of precursors in three subpallial domains that generate early embryonic astroglia and polydendrocytes. Furthermore, in order to investigate the potential function of these early Nkx2.1- derived glia, we have performed multiple immunohistochemical stainings on Nkx2.1-/- and wild-type animals, and Nkx2.1-Cre mice that were crossed to Rosa-DTA+/- mice in which the highly toxic diphtheria toxin aided to selectively deplete a majority of the Nkx2.1-derived cells. Interestingly, in these two mutants, we observed a drastic and significant loss of GFAP+, GLAST+, NG2+ and S100ß+ astroglial cells at the telencephalic midline and in the medial cortical areas. This cells loss could be directly correlated with severe axonal guidance defects observed in the corpus callosum (CC), the hippocampal commissure (HIC), the fornix (F) and the anterior commissure (AC). Axonal guidance is a key step allowing neurons to form specific connections and to become organized in a functional network. The contribution of guidepost cells inside the CC and the AC in mediating the growth of commissural axons have until now been attributed to specialized midline guidepost astroglia. Previous published results in our group have unravelled that, during embryonic development, the CC is populated in addition to astroglia by numerous glutamatergic and GABAergic guidepost neurons that are essential for the correct midline crossing of callosal axons. Therefore, the relative contribution of individual neuronal or glial populations towards the guidance of commissural axons remains largely to be investigated to understand guidance mechanisms further. Thus, we crossed Nkx2.1-Cre mice with NSE-DTA+/- mice that express the diphtheria toxin only in neurons and allowed us to selectively deplete Nkx2.1-derived GABAergic neurons. Interestingly, in the Nkx2.1-/- mice, the CC midline was totally disorganized and the callosal axons partly lost their orientation, whereas in the Nkx2.1Cre+/Rosa-DTA+/- and the Nkx2.1Cre+/NSE-DTA+/- mice, the axonal organization of the CC was not affected. In the three types of mice, hippocampal axons of the fornix were not properly fasciculated and formed disoriented bundles through the septum. Additionally, the AC formation was completely absent in Nkx2.1-/- mice and the AC was divided into two/three separate paths in the Nkx2.1Cre+/Rosa-DTA+/- mice that project in wrong territories. On the other hand, the AC didn't form or was reduced to a relatively narrower tract in the Nkx2.1Cre+/NSE-DTA+/- mice as compared to wild-type AC. These results clearly indicate that midline Nkx2.1-derived cells play a major role in commissural axons pathfinding and that both Nkx2.1-derived guidepost neurons and glia are necessary elements for the correct development of these commissures. Furthermore, during our investigations on Nkx2.1-/- and Nkx2.1Cre+/Rosa-DTA+/- mice, we noticed similar and severe defects in the erythrocytes distribution and the blood vessels network morphology in the embryonic brain of both mutants. As the Cre-mediated recombination was never observed to occur in the blood vessels of Nkx2.1-Cre mice, we inferred that the vessels defects observed were due to the loss of Nkx2.1-derived cells and not to the cells autonomous effects of Nkx2.1 in regulating endothelial cell precursors. Thereafter, the respective contribution of individual Nkx2.1-regulated neuronal or glial populations in the blood vessels network building were studied with the use of transgenic mice strains. Indeed, the use of Nkx2.1Cre+/NSE-DTA+/- mice indicated that the Nkx2.1-derived neurons were not implicated in this process. Finally, to discriminate between the two Nkx2.1-derived glial cell populations, the GLAST+ astroglia and the NG2+ polydendrocytes, an NG2-Cre mouse strain crossed to the Rosa-DTA+/- mice was used. In that mutant, the blood vessel network and the erythrocytes distribution were similarly affected as observed in Nkx2.1Cre+/Rosa-DTA+/- animals. Therefore, this result indicates that most probably, the NG2+ polydendrocytes are involved in helping to build the vessels network in the brain. Taken altogether, these observations show that during brain development, Nkx2.1- derived embryonic glial cells act as guidepost cells on the guidance of axons as well as forming vessels. Both Nkx2.1-regulated guidepost GABAergic neurons and glia collaborate to guide growing commissural axons, while polydendrocytes are implicated in regulating brain angiogenesis. - Le tissu cérébral est composé de cellules neuronales et gliales générées dans les couches germinales qui bordent les ventricules. Ces cellules se divisent, se différencient et migrent selon des voies particulières. La spécification des interneurones GABAergiques et des neurones glutamatergiques a été largement étudiée, par contre, l'origine, le destin et la fonction des cellules gliales précoces du télencéphale embryonnaire restent peu élucidées. Depuis longtemps, il était communément accepté que les cellules gliales, et plus particulièrement les astrocytes, sont générés après la neurogénèse à partir du télencéphale dorsal. Toutefois, notre travail montre que de nombreuses cellules gliales sont générées à partir de précurseurs ventraux qui expriment le gène Nkx2.1, entre E14.5 et E16.5, c'est-à dire,à des stades embryonnaires très précoces. Le gène NK2 homéobox 1 (Nkx2.1) appartient à une famille de facteurs de transcription appelée NK2. Il s'agit de protéines qui contiennent un homéo-domaine. La spécification des précurseurs de la MGE requiert l'expression du gène homéobox Nkx2.1. De plus, la fonction du gène Nkx2.1 dans la régulation de la spécification des interneurones GABAergiques et des oligodendrocytes dans le télencéphale ventral était déjà connue. Au cours de mon travail de thèse, j'ai également mis en évidence que, Nkx2.1 régule aussi les étapes de prolifération et de différenciation de divers sous-types de cellules gliales soit de type astrocytes ou bien polydendrocytes. L'utilisation d'un anticorps contre la protéine Nkx2.1 ainsi qu'une sonde à ribonucléotides contre l'ARN messager du gène Nkx2.1 ont révélé la présence de nombreuses cellules positives pour Nkx2.1 qui exprimaient des marqueurs astrocytaires (comme GLAST et GFAP) dans le télencéphale embryonnaire. Afin de déterminer de manière sélective le sort des interneurones GABAergiques, des polydendrocytes et des astrocytes dérivés de la MGE, nous avons croisé soit des souris Nkx2.1-Cre, des souris Glast-Cre ERT+/- inductibles ou bien des souris NG2-Cre avec des souris Rosa26-lox-STOP-lox-YFP (Rosa26-YFP) Cre rapportrices. L'origine précise des astroglies positives pour Nkx2.1 a été directement établie en combinant une coloration immunologique pour les glies et une électroporation focale d'un plasmide pCAG-GS-EGFP dans les domaines subpalliaux de tranches organotypiques, puis également, par des cultures de neurosphères in vitro et des expériences d'électroporation in utero d'un plasmide pCAG-GS-tomato dans le pallium ventral d'embryons Nkx2.1-Cre+/Rosa- YFP+/- au stade E14.5. Nous avons donc confirmé que les trois régions germinales du télencéphale ventral, c'est-à-dire, la MGE, l'AEP/POA et le noyau triangulaire septal sont capables de générer des cellules astrogliales. D'autre part, l'immunohistochimie pour plusieurs marqueurs d'astrocytes ou de polydendrocytes, dans les embryons Nkx2.1-/- et contrôles ainsi que dans les neurosphères, a révélé une sévère perte de ces deux types gliaux chez les mutants. Nous avons trouvé que la perte de glies correspondait à une diminution de la capacité de division des précurseurs dérivés de Nkx2.1, ainsi que l'incapacité de ces précurseurs de se différencier en cellules gliales. Nous avons en effet observé une diminution importante des cellules BrdU+ en division exprimant Nkx2.1dans la MGE*, la POA* et le noyau septal* des mutants pour Nkx2.1. D'autre part, nous avons pu mettre en évidence aussi bien in vitro, qu'in vivo, que certains précurseurs Nkx2.1+ chez le mutant gardent la capacité à se différencier en neurones tandis qu'ils perdent celle de se différencier en cellules gliales. Prises dans leur ensemble, ces observations indiquent pour la première fois que le facteur de transcription Nkx2.1 régule les étapes de prolifération et de différentiation des précurseurs des trois domaines subpalliaux qui génèrent les astroglies et polydendrocytes embryonnaires précoces. Par la suite, dans le but de comprendre la fonction potentielle de ces glies précoces, nous avons procédé à de multiples colorations immunohistochimiques sur des animaux Nkx2.1-/- et sauvages, ainsi que sur des souris Nkx2.1-Cre croisées à des souris Rosa-DTA+/- dans lesquelles la toxine diphthérique hautement toxique a permis de supprimer sélectivement la majorité des cellules dérivées de Nkx2.1. De manière intéressante, nous avons observé dans ces deux mutants, une perte drastique et significative de cellules astrogliales GFAP+, GLAST+ et polydendrocytaires NG2+ et S100ß+ dans le télencéphale, à la midline et dans les aires corticales médianes. Ces pertes ont pu être directement corrélées avec des défauts de guidage axonal observés dans le corps calleux (CC), la commissure hippocampique (HIC), le fornix (F) et la commissure antérieure (AC). Le guidage axonal est une étape clé permettant aux neurones de former des connections spécifiques et de s'organiser dans un réseau fonctionnel. La contribution des cellules « guidepost » dans le CC et dans la AC comme médiateurs de la croissance des axones commissuraux à jusqu'à aujourd'hui été attribuée spécifiquement à des astroglies « guidepost » de la midline. Des résultats publiés précédemment dans notre groupe, ont permis de montrer que, pendant le développement embryonnaire, le CC est peuplé en plus de la glie par de nombreux neurones « guidepost » glutamatergiques et GABAergiques qui sont essentiels pour le croisement correct des axones callosaux à la midline. Ainsi, la contribution relative des populations individuelles neuronales ou gliales pour le guidage des axones commissuraux demande à être approfondie afin de mieux comprendre les mécanismes de guidage. A ces fins, nous avons croisé des souris Nkx2.1-Cre avec des souris NSE-DTA+/- qui expriment la toxine diphthérique uniquement dans les neurones et ainsi, nous avons pu sélectivement supprimer les neurones dérivés de domaines Nkx2.1+. Dans les souris Nkx2.1-/-,nous avons découvert que le CC était désorganisé avec des axones callosaux perdant partiellement leur orientation, alors que dans les souris Nkx2.1Cre+/Rosa-DTA+/- et Nkx2.1Cre+/NSE-DTA+/-, l'organisation axonale n'était pas affectée. De plus, les faisceaux hippocampiques du fornix étaient défasciculés dans les trois types de mutants. Par ailleurs, la formation de la commissure antérieure (AC) était complètement absente dans les souris Nkx2.1-/- d'une part, et d'autre part, celle-ci était divisée en deux à trois voies séparées dans les souris Nkx2.1Cre+/Rosa-DTA+/-. Finalement, la AC était soit absente, soit réduite de manière ne former plus qu'un faisceau relativement plus étroit dans les souris Nkx2.1Cre+/NSE-DTA+/- en comparaison avec la AC sauvage. Ces derniers résultats indiquent clairement que les cellules dérivées de Nkx2.1 à la midline, jouent un rôle majeur dans le guidage des axones commissuraux et que, autant les neurones, que les astrocytes « guidepost » dérivés de Nkx2.1, sont des éléments nécessaires au développement correct de ces commissures. En outre, lors de nos investigations sur les souris Nkx2.1-/- et Nkx2.1Cre+/Rosa-DTA+/-, nous avons remarqués des défauts sévères et similaires dans la distribution des erythrocytes et dans la morphologie du réseau de vaisseaux sanguins dans le cerveau embryonnaire des deux mutants précités. Puisque nous n'avons jamais observé de recombinaison de la Cre recombinase dans les vaisseaux sanguins des souris Nkx2.1Cre, nous en avons déduit que les défauts de vaisseaux observés étaient dus à la perte de cellules dérivées de Nkx2.1. Il existerait donc en plus de la fonction cellulaire autonome de Nkx2.1 reconnue pour régulée directement la spécification des cellules endothéliales, une fonction indirecte de Nkx2.1. Afin de déterminer la contribution respective des populations individuelles neuronales ou gliales régulées par Nkx2.1 dans la construction du réseau de vaisseaux sanguins, nous avons utilisé diverses lignées de souris transgéniques. L'utilisation de souris Nkx2.1Cre+/NSE-DTA+/- a indiqué que les neurones dérivés de Nkx2.1 n'étaient pas impliqués dans ce processus. Finalement, afin de discriminer entre les deux populations de cellules gliales dérivées de Nkx2.1, les astroglies et les polydendrocytes, nous avons croisé une lignée de souris NG2-Cre avec des souris Rosa-DTA+/-. Dans ce dernier mutant, le réseau de vaisseaux sanguins du cortex ainsi que la distribution des erythrocytes étaient affectés de la même manière que dans le cortex des souris Nkx2.1Cre+/Rosa-DTA+/-. Par conséquent, ce résultat indique que très probablement, les polydendrocytes NG2+ sont impliqués dans la mise en place du réseau de vaisseaux dans le cerveau. Prises dans leur ensemble, ces observations montrent que durant le développement embryonnaire du cerveau, des sous-populations de glies régulées par Nkx2.1 jouent un rôle de cellules « guidepost » dans le guidage des axones, ainsi que des vaisseaux. Les polydendrocytes sont impliquées dans la régulation de l'angiogenèse tandis que, autant les neurones GABAergiques que les astrocytes collaborent dans le guidage des axones commissuraux en croissance.