996 resultados para Patched contact barrier
Resumo:
Dissertação de Mestrado apresentada ao Instituto Superior de Psicologia Aplicada para obtenção de grau de Mestre na especialidade de Psicologia Clínica.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Ir and Ni Schottky contacts on strained Al0.25Ga0.75N/GaN heterostructures, and the Ni Schottky contact with different areas on strained Al0.3Ga0.7N/GaN heterostructures have been prepared. Using the measured capacitance-voltage curves and the current-voltage curves obtained from the prepared Schottky contacts, the polarization charge densities of the AlGaN barrier layer for the Schottky contacts were analyzed and calculated by self-consistently solving Schrodinger's and Poisson's equations. It is found that the polarization charge density of the AlGaN barrier layer for the Ir Schottky contact on strained Al0.25Ga0.75N/GaN heterostructures is different from that of the Ni Schottky contact, and the polarization charge densities of the AlGaN barrier layer for Ni Schottky contacts with different areas on strained Al0.3Ga0.7N/GaN heterostructures are different corresponding to different Ni Schottky contact areas. As a result, the conclusion can be made that Schottky contact metals on strained AlGaN/GaN heterostructures have an influence on the strain of the AlGaN barrier layer. (C) 2008 American Institute of Physics.
Resumo:
The humanized anti-alpha(4) integrin Ab Natalizumab is an effective treatment for relapsing-remitting multiple sclerosis. Natalizumab is thought to exert its therapeutic efficacy by blocking the alpha(4) integrin-mediated binding of circulating immune cells to the blood-brain barrier (BBB). As alpha(4) integrins control other immunological processes, natalizumab may, however, execute its beneficial effects elsewhere. By means of intravital microscopy we demonstrate that natalizumab specifically inhibits the firm adhesion but not the rolling or capture of human T cells on the inflamed BBB in mice with acute experimental autoimmune encephalomyelitis (EAE). The efficiency of natalizumab to block T cell adhesion to the inflamed BBB was found to be more effective in EAE than in acute systemic TNF-alpha-induced inflammation. Our data demonstrate that alpha(4) integrin-mediated adhesion of human T cells to the inflamed BBB during EAE is efficiently blocked by natalizumab and thus provide the first direct in vivo proof of concept of this therapy in multiple sclerosis.
Resumo:
Purpose: To determine the validity of covering a corneal contact transducer probe with cling film as protection against the transmission of Creutzfeldt-Jakob disease (CJD). Methods: The anterior chamber depth, lens thickness and vitreous chamber depth of the right eyes of 10 subjects was recorded, under cycloplegia, with and without cling film covering over the transducer probe of a Storz Omega Compu-scan Biometric Ruler. Measurements were repeated on two occasions. Results: Cling film covering did not influence bias or repeatability. Although the 95% limits of agreement between measurements made with and without cling film covering tended to exceed the intrasessional repeatability, they did not exceed the intersessional repeatability of measurements taken without cling film. Conclusions: The results support the use of cling film as a disposable covering for corneal contact A-scan ultrasonography to avoid the risk of spreading CJD from one subject to another. © 2003 The College of Optometrists.
Resumo:
Bactrocera dorsalis (Hendel) and B. papayae Drew & Hancock represent a closely related sibling species pair for which the biological species limits are unclear; i.e., it is uncertain if they are truely two biological species, or one biological species which has been incorrectly taxonomically split. The geographic ranges of the two taxa are thought to abut or overlap on or around the Isthmus of Kra, a recognised biogeographic barrier located on the narrowest portion of the Thai Peninsula. We collected fresh material of B. dorsalis sensu lato (i.e., B. dorsalis sensu stricto + B. papayae) in a north-south transect down the Thai Peninsula, from areas regarded as being exclusively B. dorsalis s.s., across the Kra Isthmus, and into regions regarded as exclusively B. papayae. We carried out microsatellite analyses and took measurements of male genitalia and wing shape. Both the latter morphological tests have been used previously to separate these two taxa. No significant population structuring was found in the microsatellite analysis and results were consistent with an interpretation of one, predominantly panmictic population. Both morphological datasets showed consistent, clinal variation along the transect, with no evidence for disjunction. No evidence in any tests supported historical vicariance driven by the Isthmus of Kra, and none of the three datasets supported the current taxonomy of two species. Rather, within and across the area of range overlap or abutment between the two species, only continuous morphological and genetic variation was recorded. Recognition that morphological traits previously used to separate these taxa are continuous, and that there is no genetic evidence for population segregation in the region of suspected species overlap, is consistent with a growing body of literature that reports no evidence of biological differentiation between these taxa.
Resumo:
Pt/nanostructured ZnO/SiC Schottky contact devices were fabricated and characterized for hydrogen gas sensing. These devices were investigated in reverse bias due to greater sensitivity, which attributes to the application of nanostructured ZnO. The current-voltage (I-V) characteristics of these devices were measured in different hydrogen concentrations. Effective change in the barrier height for 1% hydrogen was calculated as 27.06 meV at 620°C. The dynamic response of the sensors was also investigated and a voltage shift of 325 mV was recorded at 620°C during exposure to 1% hydrogen in synthetic air.
Resumo:
Bulk heterojunction organic solar cells based on poly[4,7-bis(3- dodecylthiophene-2-yl) benzothiadiazole-co-benzothiadiazole] and [6,6]-phenyl C71-butyric acid methyl ester are investigated. A prominent kink is observed in the fourth quadrant of the current density-voltage (J-V) response. Annealing the active layer prior to cathode deposition eliminates the kink. The kink is attributed to an extraction barrier. The J-V response in these devices is well described by a power law. This behavior is attributed to an imbalance in charge carrier mobility. An expected photocurrent for the device displaying a kink in the J-V response is determined by fitting to a power law. The difference between the expected and measured photocurrent allows for the determination of a voltage drop within the device. Under simulated 1 sun irradiance, the peak voltage drop and contact resistance at short circuit are 0.14 V and 90 Ω, respectively. © 2012 American Institute of Physics.
Resumo:
Graded alternate layers of Al2O3 and 8% Y2O3-ZrO2 and their admixtures were plasma sprayed onto bond-coated mild steel. They were evaluated for thermal-shock resistance, thermal-barrier characteristics, hot corrosion resistance (molten NaCl corrodant) and depth of attack, adhesion strength and the presence of phases. Although front-back temperature drops of 423-623 K were observed, some of the coatings showed good adherence even after 100 thermal shack cycles. In the sequence of the graded layers, the oxide which is directly in contact with the bond coat appears to influence the properties especially in coatings of 150 and 300 mu m thickness. Molten NaCl readily attacks the films at high hot-face temperatures (1273 K for 1 h) and the adhesive strength falls significantly by 50-60%. Diffusion of alkaline elements is also found to depend on the chemical composition of the outer coating directly facing the molten corrodant. (C) 1997 Elsevier Science Limited.
Resumo:
Epitaxial LaNiO3 thin films have been grown on SrTiO3 and several other substrates by pulsed laser deposition. The films are observed to be metallic down to 15 K, and the temperature dependence of resistivity is similar to that of bulk LaNiO3. Epitaxial, c-axis oriented YBa2Cu3O7-x films with good superconducting properties have been grown on the LaNiO3 (100) films. I-V characteristics of the YBa2Cu3O7-x-LaNiO3 junction are linear, indicating ohmic contact between them.
Resumo:
The electrical transport behavior of n-n indium nitride nanodot-silicon (InN ND-Si) heterostructure Schottky diodes is reported here, which have been fabricated by plasma-assisted molecular beam epitaxy. InN ND structures were grown on a 20 nm InN buffer layer on Si substrates. These dots were found to be single crystalline and grown along [0 0 0 1] direction. Temperature-dependent current density-voltage plots (J-V-T) reveal that the ideality factor (eta) and Schottky barrier height (SBH) (Phi(B)) are temperature dependent. The incorrect values of the Richardson constant (A**) produced suggest an inhomogeneous barrier. Descriptions of the experimental results were explained by using two models. First one is barrier height inhomogeneities (BHIs) model, in which considering an effective area of the inhomogeneous contact provided a procedure for a correct determination of A**. The Richardson constant is extracted similar to 110 A cm(-2) K(-2) using the BHI model and that is in very good agreement with the theoretical value of 112 A cm(-2) K(-2). The second model uses Gaussian statistics and by this, mean barrier height Phi(0) and A** were found to be 0.69 eV and 113 A cm(-2) K(-2), respectively.
Resumo:
In this work, a hybrid-polymer nanocomposite film, based on polyvinyl butyral/amino-silane functionalized nano alumina, was fabricated by melt processing. The calcium degradation measurements suggest the functionalized nanocomposite films exhibit higher resistance towards moisture penetration as compared to the neat alumina loaded films. Thermal stability, mechanical strength, and contact angle studies of the composites were also conducted to evaluate the performance of the functionalized alumina loaded films. These nanocomposite films were encapsulated over Al/P3HT/ITO Schottky structured device. The changes observed in the current density of the devices to the applied voltage before and after accelerated aging conditions are presented. The nanocomposite with functionalized alumina films exhibits 50% change in current density, which is superior to that attained with neat and non-functionalized films. POLYM. COMPOS., 35:1426-1435, 2014. (c) 2013 Society of Plastics Engineers
Resumo:
We report a first principles study of the electronic properties for a contact formed between Nb-doped monolayer MoS2 and gold for different doping concentrations. We first focus on the shift of energy levels in band structure and the density of states with respect to the Fermi level for a geometrically optimized 5 x 5 MoS2 supercell for both pristine and Nb-doped structures. The doping is achieved by substituting Mo atoms with Nb atoms at random positions. It is observed that for an experimentally reported sheet hole doping concentration of (rho(2D)) 1.8 x 10(14) cm(-2), the pristine MoS2 converts to degenerate p-type semiconductor. Next, we interface this supercell with six layers of < 111 > cleaved surface of gold to investigate the contact nature of MoS2-Au system. By careful examination of projected band structure, projected density of states, effective potential and charge density difference, we demonstrate that the Schottky barrier nature observed for pure MoS2-Au contact can be converted from n-type to p-type by efficient Nb doping.
Resumo:
A new method for the separation of contact resistance (R-contact) into Schottky barrier resistance (R-SB) and interlayer resistance (R-IL) is proposed for multilayered MoS2 FETs. While R-SB varies exponentially with Schottky barrier height (Phi(bn)), R-IL essentially remains unchanged. An empirical model utilizing this dependence of R-contact versus Phi(bn) is proposed and fits to the experimental data. The results, on comparison with the existing reports of lowest R-contact, suggest that the extracted R-IL (1.53 k Omega.mu m) for an unaltered channel would determine the lower limit of intrinsic R-contact even for barrierless contacts for multilayered exfoliated MoS2 FETs.
Resumo:
A low Schottky barrier height (SBH) at source/drain contact is essential for achieving high drive current in atomic layer MoS(2-)channel-based field effect transistors. Approaches such as choosing metals with appropriate work functions and chemical doping are employed previously to improve the carrier injection from the contact electrodes to the channel and to mitigate the SBH between the MoS2 and metal. Recent experiments demonstrate significant SBH reduction when graphene layer is inserted between metal slab (Ti and Ni) and MoS2. However, the physical or chemical origin of this phenomenon is not yet clearly understood. In this work, density functional theory simulations are performed, employing pseudopotentials with very high basis sets to get insights of the charge transfer between metal and monolayer MoS2 through the inserted graphene layer. Our atomistic simulations on 16 different interfaces involving five different metals (Ti, Ag, Ru, Au, and Pt) reveal that (i) such a decrease in SBH is not consistent among various metals, rather an increase in SBH is observed in case of Au and Pt; (ii) unlike MoS2-metal interface, the projected dispersion of MoS2 remains preserved in any MoS2-graphene- metal system with shift in the bands on the energy axis. (iii) A proper choice of metal (e.g., Ru) may exhibit ohmic nature in a graphene-inserted MoS2-metal contact. These understandings would provide a direction in developing high-performance transistors involving heteroatomic layers as contact electrodes. (c) 2016 AIP Publishing LLC.