944 resultados para Passive vibration damping
Resumo:
This paper examines two passive techniques for vibration reduction in mechanical systems: the first one is based on dynamic vibration absorbers (DVAs) and the second uses resonant circuit shunted (RCS) piezoceramics. Genetic algorithms are used to determine the optimal design parameters with respect to performance indexes, which are associated with the dynamical behavior of the system over selected frequency bands. The calculation of the frequency response functions (FRFs) of the composite structure (primary system + DVAs) is performed through a substructure coupling technique. A modal technique is used to determine the frequency response function of the structure containing shunted piezoceramics which are bonded to the primary structure. The use of both techniques simultaneously on the same structure is investigated. The methodology developed is illustrated by numerical applications in which the primary structure is represented by simple Euler-Bernoulli beams. However, the design aspects of vibration control devices presented in this paper can be extended to more complex structures.
Resumo:
Hybrid active-passive damping treatments combine the reliability, low cost and robustness of viscoelastic damping treatments and the high-performance, modal selective and adaptive piezoelectric active control. Numerous hybrid damping treatments have been reported in the literature. They differ mainly by the relative positions of viscoelastic treatments, sensors and piezoelectric actuators. In this work we present an experimental analysis of three active-passive damping design configurations applied to a cantilever beam. In particular, two design configurations based on the extension mode of piezoelectric actuators combined with viscoelastic constrained layer damping treatments and one design configuration with shear piezoelectric actuators embedded in a sandwich beam with viscoelastic core are analyzed. For comparison purposes, a purely active design configuration with an extension piezoelectric actuator bonded to an elastic beam is also analyzed. The active-passive damping performance of the four design configurations is compared. Results show that active-passive design configurations provide more reliable and wider-range damping performance than the purely active configuration.
Resumo:
This work presents a performance analysis of multimodal passive vibration control of a sandwich beam using shear piezoelectric materials, embedded in a sandwich beam core, connected to independent resistive shunt circuits. Shear piezoelectric actuators were recently shown to be more interesting for higher frequencies and stiffer structures. In particular, for shunted damping, it was shown that equivalent material loss factors of up to 31% can be achieved by optimizing the shunt circuit. In the present work, special attention is given to the design of multimodal vibration control through independent shunted shear piezoelectric sensors. In particular, a parametric analysis is performed to evaluate optimal configurations for a set of modes to be damped. Then, a methodology to evaluate the modal damping resulting from each shunted piezoelectric sensor is presented using the modal strain energy method. Results show that modal damping factors of 1%-2% can be obtained for three selected vibration modes.
Resumo:
The objective of this contribution is to extend the models of cellular/composite material design to nonlinear material behaviour and apply them for design of materials for passive vibration control. As a first step a computational tool allowing determination of optimised one-dimensional isolator behaviour was developed. This model can serve as a representation for idealised macroscopic behaviour. Optimal isolator behaviour to a given set of loads is obtained by generic probabilistic metaalgorithm, simulated annealing. Cost functional involves minimization of maximum response amplitude in a set of predefined time intervals and maximization of total energy absorbed in the first loop. Dependence of the global optimum on several combinations of leading parameters of the simulated annealing procedure, like neighbourhood definition and annealing schedule, is also studied and analyzed. Obtained results facilitate the design of elastomeric cellular materials with improved behaviour in terms of dynamic stiffness for passive vibration control.
Resumo:
The aim of this contribution is to extend the techniques of composite materials design to non-linear material behaviour and apply it for design of new materials for passive vibration control. As a first step a computational tool allowing determination of macroscopic optimized one-dimensional isolator behaviour was developed. Voigt, Maxwell, standard and more complex material models can be implemented. Objective function considers minimization of the initial reaction and/or displacement peak as well as minimization of the steady-state amplitude of reaction and/or displacement. The complex stiffness approach is used to formulate the governing equations in an efficient way. Material stiffness parameters are assumed as non-linear functions of the displacement. The numerical solution is performed in the complex space. The steady-state solution in the complex space is obtained by an iterative process based on the shooting method which imposes the conditions of periodicity with respect to the known value of the period. Extension of the shooting method to the complex space is presented and verified. Non-linear behaviour of material parameters is then optimized by generic probabilistic meta-algorithm, simulated annealing. Dependence of the global optimum on several combinations of leading parameters of the simulated annealing procedure, like neighbourhood definition and annealing schedule, is also studied and analyzed. Procedure is programmed in MATLAB environment.
Resumo:
The aim of the present work is to study the noise and vibration damping capacity of ferromagnetic Fe-16%Cr base alloys (before and after heat treatment) with different Al and Mo contents. The noise damping was evaluated by the level of sound emission after an impact. The vibration damping was studied using a cantilever device. In addition to these tests, the magnetic structure of the materials was also investigated by Kerr effect. It was verified that the materials can decrease noise level in the frequency range of human earring. The vibration damping is influenced by heat treatment and chemical composition of the alloy. The improvement of vibration damping after heat treatment is ascribed to the decrease of internal stresses in materials and changes in magnetic domain structures.
Resumo:
A nonlinear spring element of a vibration isolator should ideally possess high static and low dynamic stiffness. A buckled beam may be a good candidate to fulfil this requirement provided its internal resonance frequencies are high enough to achieve a wide frequency range of isolation. If a straight beam is used, there is a singularity in the force-displacement characteristic. To smooth this characteristic and eliminate the singularity at the buckling point, beams with initial constant curvature along their length are investigated here as an alternative to the buckled straight beam. Their force displacement characteristics are compared with different initial curvature and with a straight buckled beam. The minimum achievable dynamic stiffness with its corresponding static stiffness is compared for different initial curvatures. A case study is considered where the beams are optimized to isolate a one kilogram mass and to achieve a natural frequency of 1 Hz, considering small amplitudes of vibration. Resonance frequencies of the optimized beams for different curvature are presented. It is shown that an order of magnitude reduction in stiffness compared with a linear spring is achievable, while the internal resonance frequencies of the curved beam are high enough to achieve an acceptable frequency range of isolation.
Resumo:
Laminatedglass is composed of two glass layers and a thin intermediate PVB layer, strongly influencing PVB's viscoelastic behaviour its dynamic response. While natural frequencies are relatively easily identified even with simplified FE models, damping ratios are not identified with such an ease. In order to determine to what extent external factors influence dampingidentification, different tests have been carried out. The external factors considered, apart from temperature, are accelerometers, connection cables and the effect of the glass layers. To analyse the influence of the accelerometers and their connection cables a laser measuring device was employed considering three possibilities: sample without instrumentation, sample with the accelerometers fixed and sample completely instrumented. When the sample is completely instrumented, accelerometer readings are also analysed. To take into consideration the effect of the glass layers, tests were realised both for laminatedglass and monolithic samples. This paper presents in depth data analysis of the different configurations and establishes criteria for data acquisition when testing laminatedglass.
Resumo:
Civil engineering structures such as floor systems with open-plan layout or lightweight footbridges are susceptible to excessive level of vibrations caused by human loading. Active vibration control (AVC) via inertial mass actuators has been shown to be a viable technique to mitigate vibrations, allowing structures to satisfy vibration serviceability limits. Most of the AVC applications involve the use of SISO (single input single-output) strategies based on collocated control. However, in the case of floor structures, in which mostof the vibration modes are locally spatially distributed, SISO or multi-SISO strategies are quite inefficient. In this paper, a MIMO (multi-inputs multi-outputs) control in decentralised and centralised configuration is designed. The design process simultaneously finds the placement of multiple actuators and sensors and the output feedback gains. Additionally, actuator dynamics, actuator nonlinearities and frequency and time weightings are considered into the design process. Results with SISO and decentralised and centralised MIMO control (for a given number of actuators and sensors) are compared, showing the advantages of MIMO control for floor vibration control.
Resumo:
This paper investigates a novel design approach for a vibration isolator for use in space structures. The approach used can particularly be applicable for aerospace structures that support high precision instrumentation such as satellite payloads. The isolator is a space-frame structure that is folded in on itself to act as a mechanical filter over a defined frequency range. The absence of viscoelastic elements in such a mounting makes the design suitable for use in a vacuum and in high temperature or harsh environments with no risk of drift in alignment of the structure. The design uses a genetic algorithm based geometric optimisation routine to maximise passive vibration isolation, and this is hybridised with a geometric feasibility search. To complement the passive isolation system, an active system is incorporated in the design to add damping. Experimental work to validate the feasibility of the approach is also presented, with the active/passive structure achieving transmissibility of about 19 dB over a range of 1-250 Hz. It is shown here that the use of these novel anti-vibration mountings has no or little consequent weight and cost penalties whilst maintaining their effectiveness with the vibration levels. The approach should pave the way for the design of anti-vibration mountings that can be used between most pieces of equipment and their supporting structure. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
Resumo:
The vibration transmissibility characteristics of a single-degree-of- freedom (SDOF) passive vibration isolation system with different nonlinear dampers are investigated in this paper. In one configuration, the damper is assumed to be linear and viscous, and is connected to the mass so that it is perpendicular to the spring (horizontal damper). The vibration is in the direction of the spring. The second configuration is one in which the damper is in parallel with the spring but the damping force is proportional to the cube of the relative velocity across the damper (cubic damping). Both configurations are studied for small amplitudes of excitation, when some analysis can be conducted based on analytical expressions, and for large amplitudes of excitation, where the analysis is based on numerical simulations. It is found that the two nonlinear systems can outperform the linear system when force transmissibility is considered. However, for displacement transmissibility, the system with the horizontal damper exhibits some desirable properties, but the system with cubic damping does not. © 2012 Elsevier Ltd.
Resumo:
Fiber metal laminates (FML) offer significant improvements over current available materials for aircraft structures due to their excellent mechanical characteristics and relatively low density. Non-destructive testing techniques are being used in the characterization of composite materials. Among these, vibration testing is one of the most used tools because it allows the determination of the mechanical properties. In this work, the viscoelastic properties such as elastic (E') and viscous (E) responses were obtained for aluminum 2024 alloy; carbon fiber/epoxy; glass fiber/epoxy and their hybrids aluminum 2024 alloy/carbon fiber/epoxy and aluminum 2024 alloy/glass fiber/epoxy composites. The experimental results were compared to calculated E modulus values by using the composite micromechanics approach. For all specimens studied, the experimental values showed good agreement with the theoretical values. The damping behavior, i.e. The storage modulus and the loss factor, from the aluminum 2024 alloy and fiber epoxy composites can be used to estimate the viscoelastic response of the hybrid FML. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Structural vibration control is of great importance. Current active and passive vibration control strategies usually employ individual elements to fulfill this task, such as viscoelastic patches for providing damping, transducers for picking up signals and actuators for inputting actuating forces. The goal of this dissertation work is to design, manufacture, investigate and apply a new type of multifunctional composite material for structural vibration control. This new composite, which is based on multi-walled carbon nanotube (MWCNT) film, is potentially to function as free layer damping treatment and strain sensor simultaneously. That is, the new material integrates the transducer and the damping patch into one element. The multifunctional composite was prepared by sandwiching the MWCNT film between two adhesive layers. Static sensing test indicated that the MWCNT film sensor resistance changes almost linearly with the applied load. Sensor sensitivity factors were comparable to those of the foil strain gauges. Dynamic test indicated that the MWCNT film sensor can outperform the foil strain gage in high frequency ranges. Temperature test indicated the MWCNT sensor had good temperature stability over the range of 237 K-363 K. The Young’s modulus and shear modulus of the MWCNT film composite were acquired by nanoindentation test and direct shear test, respectively. A free vibration damping test indicated that the MWCNT composite sensor can also provide good damping without adding excessive weight to the base structure. A new model for sandwich structural vibration control was then proposed. In this new configuration, a cantilever beam covered with MWCNT composite on top and one layer of shape memory alloy (SMA) on the bottom was used to illustrate this concept. The MWCNT composite simultaneously serves as free layer damping and strain sensor, and the SMA acts as actuator. Simple on-off controller was designed for controlling the temperature of the SMA so as to control the SMA recovery stress as input and the system stiffness. Both free and forced vibrations were analyzed. Simulation work showed that this new configuration for sandwich structural vibration control was successful especially for low frequency system.
Resumo:
The objective of this work is to present the finite element modeling of laminate composite plates with embedded piezoelectric patches or layers that are then connected to active-passive resonant shunt circuits, composed of resistance, inductance and voltage source. Applications to passive vibration control and active control authority enhancement are also presented and discussed. The finite element model is based on an equivalent single layer theory combined with a third-order shear deformation theory. A stress-voltage electromechanical model is considered for the piezoelectric materials fully coupled to the electrical circuits. To this end, the electrical circuit equations are also included in the variational formulation. Hence, conservation of charge and full electromechanical coupling are guaranteed. The formulation results in a coupled finite element model with mechanical (displacements) and electrical (charges at electrodes) degrees of freedom. For a Graphite-Epoxy (Carbon-Fibre Reinforced) laminate composite plate, a parametric analysis is performed to evaluate optimal locations along the plate plane (xy) and thickness (z) that maximize the effective modal electromechanical coupling coefficient. Then, the passive vibration control performance is evaluated for a network of optimally located shunted piezoelectric patches embedded in the plate, through the design of resistance and inductance values of each circuit, to reduce the vibration amplitude of the first four vibration modes. A vibration amplitude reduction of at least 10 dB for all vibration modes was observed. Then, an analysis of the control authority enhancement due to the resonant shunt circuit, when the piezoelectric patches are used as actuators, is performed. It is shown that the control authority can indeed be improved near a selected resonance even with multiple pairs of piezoelectric patches and active-passive circuits acting simultaneously. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Appearance of the vibration is the very important problem in long tool turning and milling. Current solutions of minimizing vibrations provided by different tool suppliers are very expensive. This Master’s Thesis is presenting the new type of vibration free machining tools produced by Konepaja ASTEX Gear Oy that have cheaper production costs compare to competitors’ products. Vibration problems in machining and their today’s solutions are analyzed in this work. The new vibration damping invention is presented and described. Moreover, the production, laboratory experimental modal analysis and practical testing of the new vibration free prototypes are observed and analyzed on the pages of this Thesis. Based on the testing results the new invention is acknowledged to be successful and approved for further studies and developments.