946 resultados para Passive vibration
Resumo:
Hybrid active-passive damping treatments combine the reliability, low cost and robustness of viscoelastic damping treatments and the high-performance, modal selective and adaptive piezoelectric active control. Numerous hybrid damping treatments have been reported in the literature. They differ mainly by the relative positions of viscoelastic treatments, sensors and piezoelectric actuators. In this work we present an experimental analysis of three active-passive damping design configurations applied to a cantilever beam. In particular, two design configurations based on the extension mode of piezoelectric actuators combined with viscoelastic constrained layer damping treatments and one design configuration with shear piezoelectric actuators embedded in a sandwich beam with viscoelastic core are analyzed. For comparison purposes, a purely active design configuration with an extension piezoelectric actuator bonded to an elastic beam is also analyzed. The active-passive damping performance of the four design configurations is compared. Results show that active-passive design configurations provide more reliable and wider-range damping performance than the purely active configuration.
Resumo:
This work presents a performance analysis of multimodal passive vibration control of a sandwich beam using shear piezoelectric materials, embedded in a sandwich beam core, connected to independent resistive shunt circuits. Shear piezoelectric actuators were recently shown to be more interesting for higher frequencies and stiffer structures. In particular, for shunted damping, it was shown that equivalent material loss factors of up to 31% can be achieved by optimizing the shunt circuit. In the present work, special attention is given to the design of multimodal vibration control through independent shunted shear piezoelectric sensors. In particular, a parametric analysis is performed to evaluate optimal configurations for a set of modes to be damped. Then, a methodology to evaluate the modal damping resulting from each shunted piezoelectric sensor is presented using the modal strain energy method. Results show that modal damping factors of 1%-2% can be obtained for three selected vibration modes.
Resumo:
The objective of this contribution is to extend the models of cellular/composite material design to nonlinear material behaviour and apply them for design of materials for passive vibration control. As a first step a computational tool allowing determination of optimised one-dimensional isolator behaviour was developed. This model can serve as a representation for idealised macroscopic behaviour. Optimal isolator behaviour to a given set of loads is obtained by generic probabilistic metaalgorithm, simulated annealing. Cost functional involves minimization of maximum response amplitude in a set of predefined time intervals and maximization of total energy absorbed in the first loop. Dependence of the global optimum on several combinations of leading parameters of the simulated annealing procedure, like neighbourhood definition and annealing schedule, is also studied and analyzed. Obtained results facilitate the design of elastomeric cellular materials with improved behaviour in terms of dynamic stiffness for passive vibration control.
Resumo:
The aim of this contribution is to extend the techniques of composite materials design to non-linear material behaviour and apply it for design of new materials for passive vibration control. As a first step a computational tool allowing determination of macroscopic optimized one-dimensional isolator behaviour was developed. Voigt, Maxwell, standard and more complex material models can be implemented. Objective function considers minimization of the initial reaction and/or displacement peak as well as minimization of the steady-state amplitude of reaction and/or displacement. The complex stiffness approach is used to formulate the governing equations in an efficient way. Material stiffness parameters are assumed as non-linear functions of the displacement. The numerical solution is performed in the complex space. The steady-state solution in the complex space is obtained by an iterative process based on the shooting method which imposes the conditions of periodicity with respect to the known value of the period. Extension of the shooting method to the complex space is presented and verified. Non-linear behaviour of material parameters is then optimized by generic probabilistic meta-algorithm, simulated annealing. Dependence of the global optimum on several combinations of leading parameters of the simulated annealing procedure, like neighbourhood definition and annealing schedule, is also studied and analyzed. Procedure is programmed in MATLAB environment.
Resumo:
A nonlinear spring element of a vibration isolator should ideally possess high static and low dynamic stiffness. A buckled beam may be a good candidate to fulfil this requirement provided its internal resonance frequencies are high enough to achieve a wide frequency range of isolation. If a straight beam is used, there is a singularity in the force-displacement characteristic. To smooth this characteristic and eliminate the singularity at the buckling point, beams with initial constant curvature along their length are investigated here as an alternative to the buckled straight beam. Their force displacement characteristics are compared with different initial curvature and with a straight buckled beam. The minimum achievable dynamic stiffness with its corresponding static stiffness is compared for different initial curvatures. A case study is considered where the beams are optimized to isolate a one kilogram mass and to achieve a natural frequency of 1 Hz, considering small amplitudes of vibration. Resonance frequencies of the optimized beams for different curvature are presented. It is shown that an order of magnitude reduction in stiffness compared with a linear spring is achievable, while the internal resonance frequencies of the curved beam are high enough to achieve an acceptable frequency range of isolation.
Resumo:
This paper investigates a novel design approach for a vibration isolator for use in space structures. The approach used can particularly be applicable for aerospace structures that support high precision instrumentation such as satellite payloads. The isolator is a space-frame structure that is folded in on itself to act as a mechanical filter over a defined frequency range. The absence of viscoelastic elements in such a mounting makes the design suitable for use in a vacuum and in high temperature or harsh environments with no risk of drift in alignment of the structure. The design uses a genetic algorithm based geometric optimisation routine to maximise passive vibration isolation, and this is hybridised with a geometric feasibility search. To complement the passive isolation system, an active system is incorporated in the design to add damping. Experimental work to validate the feasibility of the approach is also presented, with the active/passive structure achieving transmissibility of about 19 dB over a range of 1-250 Hz. It is shown here that the use of these novel anti-vibration mountings has no or little consequent weight and cost penalties whilst maintaining their effectiveness with the vibration levels. The approach should pave the way for the design of anti-vibration mountings that can be used between most pieces of equipment and their supporting structure. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
Resumo:
The objective of this work is to present the finite element modeling of laminate composite plates with embedded piezoelectric patches or layers that are then connected to active-passive resonant shunt circuits, composed of resistance, inductance and voltage source. Applications to passive vibration control and active control authority enhancement are also presented and discussed. The finite element model is based on an equivalent single layer theory combined with a third-order shear deformation theory. A stress-voltage electromechanical model is considered for the piezoelectric materials fully coupled to the electrical circuits. To this end, the electrical circuit equations are also included in the variational formulation. Hence, conservation of charge and full electromechanical coupling are guaranteed. The formulation results in a coupled finite element model with mechanical (displacements) and electrical (charges at electrodes) degrees of freedom. For a Graphite-Epoxy (Carbon-Fibre Reinforced) laminate composite plate, a parametric analysis is performed to evaluate optimal locations along the plate plane (xy) and thickness (z) that maximize the effective modal electromechanical coupling coefficient. Then, the passive vibration control performance is evaluated for a network of optimally located shunted piezoelectric patches embedded in the plate, through the design of resistance and inductance values of each circuit, to reduce the vibration amplitude of the first four vibration modes. A vibration amplitude reduction of at least 10 dB for all vibration modes was observed. Then, an analysis of the control authority enhancement due to the resonant shunt circuit, when the piezoelectric patches are used as actuators, is performed. It is shown that the control authority can indeed be improved near a selected resonance even with multiple pairs of piezoelectric patches and active-passive circuits acting simultaneously. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The vibration transmissibility characteristics of a single-degree-of- freedom (SDOF) passive vibration isolation system with different nonlinear dampers are investigated in this paper. In one configuration, the damper is assumed to be linear and viscous, and is connected to the mass so that it is perpendicular to the spring (horizontal damper). The vibration is in the direction of the spring. The second configuration is one in which the damper is in parallel with the spring but the damping force is proportional to the cube of the relative velocity across the damper (cubic damping). Both configurations are studied for small amplitudes of excitation, when some analysis can be conducted based on analytical expressions, and for large amplitudes of excitation, where the analysis is based on numerical simulations. It is found that the two nonlinear systems can outperform the linear system when force transmissibility is considered. However, for displacement transmissibility, the system with the horizontal damper exhibits some desirable properties, but the system with cubic damping does not. © 2012 Elsevier Ltd.
Resumo:
Structural vibration control is of great importance. Current active and passive vibration control strategies usually employ individual elements to fulfill this task, such as viscoelastic patches for providing damping, transducers for picking up signals and actuators for inputting actuating forces. The goal of this dissertation work is to design, manufacture, investigate and apply a new type of multifunctional composite material for structural vibration control. This new composite, which is based on multi-walled carbon nanotube (MWCNT) film, is potentially to function as free layer damping treatment and strain sensor simultaneously. That is, the new material integrates the transducer and the damping patch into one element. The multifunctional composite was prepared by sandwiching the MWCNT film between two adhesive layers. Static sensing test indicated that the MWCNT film sensor resistance changes almost linearly with the applied load. Sensor sensitivity factors were comparable to those of the foil strain gauges. Dynamic test indicated that the MWCNT film sensor can outperform the foil strain gage in high frequency ranges. Temperature test indicated the MWCNT sensor had good temperature stability over the range of 237 K-363 K. The Young’s modulus and shear modulus of the MWCNT film composite were acquired by nanoindentation test and direct shear test, respectively. A free vibration damping test indicated that the MWCNT composite sensor can also provide good damping without adding excessive weight to the base structure. A new model for sandwich structural vibration control was then proposed. In this new configuration, a cantilever beam covered with MWCNT composite on top and one layer of shape memory alloy (SMA) on the bottom was used to illustrate this concept. The MWCNT composite simultaneously serves as free layer damping and strain sensor, and the SMA acts as actuator. Simple on-off controller was designed for controlling the temperature of the SMA so as to control the SMA recovery stress as input and the system stiffness. Both free and forced vibrations were analyzed. Simulation work showed that this new configuration for sandwich structural vibration control was successful especially for low frequency system.
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The purpose of this Project is, first and foremost, to disclose the topic of nonlinear vibrations and oscillations in mechanical systems and, namely, nonlinear normal modes NNMs to a greater audience of researchers and technicians. To do so, first of all, the dynamical behavior and properties of nonlinear mechanical systems is outlined from the analysis of a pair of exemplary models with the harmonic balanced method. The conclusions drawn are contrasted with the Linear Vibration Theory. Then, it is argued how the nonlinear normal modes could, in spite of their limitations, predict the frequency response of a mechanical system. After discussing those introductory concepts, I present a Matlab package called 'NNMcont' developed by a group of researchers from the University of Liege. This package allows the analysis of nonlinear normal modes of vibration in a range of mechanical systems as extensions of the linear modes. This package relies on numerical methods and a 'continuation algorithm' for the computation of the nonlinear normal modes of a conservative mechanical system. In order to prove its functionality, a two degrees of freedom mechanical system with elastic nonlinearities is analized. This model comprises a mass suspended on a foundation by means of a spring-viscous damper mechanism -analogous to a very simplified model of most suspended structures and machines- that has attached a mass damper as a passive vibration control system. The results of the computation are displayed on frequency energy plots showing the NNMs branches along with modal curves and time-series plots for each normal mode. Finally, a critical analysis of the results obtained is carried out with an eye on devising what they can tell the researcher about the dynamical properties of the system.
Resumo:
This paper examines two passive techniques for vibration reduction in mechanical systems: the first one is based on dynamic vibration absorbers (DVAs) and the second uses resonant circuit shunted (RCS) piezoceramics. Genetic algorithms are used to determine the optimal design parameters with respect to performance indexes, which are associated with the dynamical behavior of the system over selected frequency bands. The calculation of the frequency response functions (FRFs) of the composite structure (primary system + DVAs) is performed through a substructure coupling technique. A modal technique is used to determine the frequency response function of the structure containing shunted piezoceramics which are bonded to the primary structure. The use of both techniques simultaneously on the same structure is investigated. The methodology developed is illustrated by numerical applications in which the primary structure is represented by simple Euler-Bernoulli beams. However, the design aspects of vibration control devices presented in this paper can be extended to more complex structures.
Resumo:
Dissertação apresentada à Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Doutor em Engenharia Civil
Resumo:
Objective. Vibration training (VT) is a new exercise method, with good acceptance among sedentary subjects, due to its passive principle: the machine moves the subject, not the opposite. We hypothesize that untrained subjects can benefit from a greater cardiovascular and metabolic stimulation than trained athletes, resembling classical aerobic-type activity, in addition of eliciting strength gains shown in diverse studies. Methods. 3 group of male subjects, inactive (SED), endurance trained athletes (END) and strength trained athletes (STR) underwent fitness (VO2max) and lower-body strength tests (isokinetic). Subjects were submitted to a session of oscillating VT, composed of 3 exercises (isometric half-squat, dynamic squat, dynamic squat with added load), each of 3 minutes duration, and repeated at 3 frequencies. VO2, heart rate and Borg scale were monitored. Results. 27 healthy subjects (10 SED, 9 END and 8 STR), mean age 24.5 (SED), 25.0 (STR) and 29.8 (END) were included. VO2max was significantly different as expected (47.9 vs. 52.9 vs. 63.9 ml/kg/min, resp. for SED, STR and END). Isokinetic dominant leg extensors strength was higher in STR (3.32 Nm/kg vs. 2.60 and 2.74 in SED and END). During VT, peak oxygen consumption (% of VO2max) attained was 59.3 in SED, 50.8 in STR and 48.0 in END (P<0.001 between SED and other subjects). Peak heart rate (% of heart rate max) was 82.7 in SED, 80.4 in STR and 72.4 in END. In SED, dynamic exercises without extra load elicited 51.0% of VO2max and 72.1% of heart rate max, and perceived effort reached 15.1/20. Conclusions. VT is an unconventional type of exercise, which has been shown to enhance strength, bone density, balance and flexibility. Users are attracted by the relative passivity. In SED, we show that VT elicits sufficient cardiovascular response to benefit overall fitness in addition to the known strength effects. VT's higher acceptance as an exercise in sedentary people, compared to jogging or cycling for example, can lead to better adherence to physical activity. Although long-term effects of VT on health are not avalaible, we believe this type of combination of aerobic and resistance-type exercise can be beneficial on multiple health parameters, especially cardiovascular health.