1000 resultados para Particle-reinforcement


Relevância:

80.00% 80.00%

Publicador:

Resumo:

For the potential influence produced by the reinforcement/matrix interphase in particle reinforced metal matrix composites (PMMCs), a unit cell model with transition interphase was proposed. Uniaxial tensile loading was simulated and the stress/strain behavior was predicted. The results show that a transition interphase with both appropriate strength and thickness could affect the failure mode, reduce the stress concentration, and enhance the maximum strain value of the composite.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A randomly distributed multi-particle model considering the effects of particle/matrix interface and strengthening mechanisms introduced by the particles has been constructed. Particle shape, distribution, volume fraction and the particles/matrix interface due to the factors including element diffusion were considered in the model. The effects of strengthening mechanisms, caused by the introduction of particles on the mechanical properties of the composites, including grain refinement strengthening, dislocation strengthening and Orowan strengthening, are incorporated. In the model, the particles are assumed to have spheroidal shape, with uniform distribution of the centre, long axis length and inclination angle. The axis ratio follows a right half-normal distribution. Using Monte Carlo method, the location and shape parameters of the spheroids are randomly selected. The particle volume fraction is calculated using the area ratio of the spheroids. Then, the effects of particle/matrix interface and strengthening mechanism on the distribution of Mises stress and equivalent strain and the flow behaviour for the composites are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Silk fibroin protein is biodegradable and biocompatible, exhibiting excellent mechanical properties for various biomedical applications. However, porous three-dimensional (3-D) silk fibroin scaffolds, or silk sponges, usually fall short in matching the initial mechanical requirements for bone tissue engineering. In the present study, silk sponge matrices were reinforced with silk microparticles to generate protein-protein composite scaffolds with desirable mechanical properties for in vitro osteogenic tissue formation. It was found that increasing the silk microparticle loading led to a substantial increase in the scaffold compressive modulus from 0.3 MPa (non-reinforced) to 1.9 MPa for 1:2 (matrix:particle) reinforcement loading by dry mass. Biochemical, gene expression, and histological assays were employed to study the possible effects of increasing composite scaffold stiffness, due to microparticle reinforcement, on in vitro osteogenic differentiation of human mesenchymal stem cells (hMSCs). Increasing silk microparticle loading increased the osteogenic capability of hMSCs in the presence of bone morphogenic protein-2 (BMP-2) and other osteogenic factors in static culture for up to 6 weeks. The calcium adsorption increased dramatically with increasing loading, as observed from biochemical assays, histological staining, and microcomputer tomography (μCT) analysis. Specifically, calcium content in the scaffolds increased by 0.57, 0.71, and 1.27 mg (per μg of DNA) from 3 to 6 weeks for matrix to particle dry mass loading ratios of 1:0, 1:1, and 1:2, respectively. In addition, μCT imaging revealed that at 6 weeks, bone volume fraction increased from 0.78% for non-reinforced to 7.1% and 6.7% for 1:1 and 1:2 loading, respectively. Our results support the hypothesis that scaffold stiffness may strongly influence the 3-D in vitro differentiation capabilities of hMSCs, providing a means to improve osteogenic outcomes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Silk fibroin is a useful protein polymer for biomaterials and tissue engineering. In this work, porogen leached scaffolds prepared from aqueous and HFIP silk solutions were reinforced through the addition of silk particles. This led to about 40 times increase in the specific compressive modulus and the yield strength of HFIP-based scaffolds. This increase in mechanical properties resulted from the high interfacial cohesion between the silk matrix and the reinforcing silk particles, due to partial solubility of the silk particles in HFIP. The porosity of scaffolds was reduced from ≈90% (control) to ≈75% for the HFIP systems containing 200% particle reinforcement, while maintaining pore interconnectivity. The presence of the particles slowed the enzymatic degradation of silk scaffolds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A nano-modified matrix based on an epoxy resin and montmorillonite (MMT) layered silicates, was successfully infiltrated through 10 ply of carbon fibre preform. A combined fabrication process of a vacuum assisted resin infusion method (VARIM) followed by a rapid heating rate and mechanical vibration during cure, facilitated the infiltration of the nano-modified matrix through the preform. This was achieved by dispersing the MMT clay in the resin and ensuring that the viscosity of the nano-modified matrix remained low during fabrication. SEM-EDX (energy dispersive X-ray spectroscopy) spectra showed that chemical constituents within MMT clay including silicon, aluminium and magnesium elements had permeated through the fibre preform and were detected throughout the laminate. A homogeneous resin/particle distribution was achieved with the size of clay particles ranging from 100 nm to 1 μm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper investigates the effect of particle size of sand and the surface asperities of reinforcing material on their interlocking mechanism and its influence on the interfacial shear strength under direct sliding condition. Three sands of different sizes with similar morphological characteristics and four different types of reinforcing materials with different surface features were used in this study. Interface direct shear tests on these materials were performed in a specially developed symmetric loading interface direct shear test setup. Morphological characteristics of sand particles were determined from digital image analysis and the surface roughness of the reinforcing materials was measured using an analytical expression developed for this purpose. Interface direct shear tests at three different normal stresses were carried out by shearing the sand on the reinforcing material fixed to a smooth surface. Test results revealed that the peak interfacial friction and dilation angles are hugely dependent upon the interlocking between the sand particles and the asperities of reinforcing material, which in turn depends on the relative size of sand particles and asperities. Asperity ratio (AS/D-50) of interlocking materials, which is defined as the ratio of asperity spacing of the reinforcing material and the mean particle size of sand was found to govern the interfacial shear strength with highest interfacial strength measured when the asperity ratio was equal to one, which represents the closest fitting of sand particles into the asperities. It was also understood that the surface roughness of the reinforcing material influences the shear strength to an extent, the influence being more pronounced in coarser particles. Shear bands in the interface shear tests were analysed through image segmentation technique and it was observed that the ratio of shear band thickness (t) to the median particle size (D-50) was maximum when the AS/D-50 was equal to one. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Developing an effective memetic algorithm that integrates the Particle Swarm Optimization (PSO) algorithm and a local search method is a difficult task. The challenging issues include when the local search method should be called, the frequency of calling the local search method, as well as which particle should undergo the local search operations. Motivated by this challenge, we introduce a new Reinforcement Learning-based Memetic Particle Swarm Optimization (RLMPSO) model. Each particle is subject to five operations under the control of the Reinforcement Learning (RL) algorithm, i.e. exploration, convergence, high-jump, low-jump, and fine-tuning. These operations are executed by the particle according to the action generated by the RL algorithm. The proposed RLMPSO model is evaluated using four uni-modal and multi-modal benchmark problems, six composite benchmark problems, five shifted and rotated benchmark problems, as well as two benchmark application problems. The experimental results show that RLMPSO is useful, and it outperforms a number of state-of-the-art PSO-based algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a new comprehensive planning methodology is proposed for implementing distribution network reinforcement. The load growth, voltage profile, distribution line loss, and reliability are considered in this procedure. A time-segmentation technique is employed to reduce the computational load. Options considered range from supporting the load growth using the traditional approach of upgrading the conventional equipment in the distribution network, through to the use of dispatchable distributed generators (DDG). The objective function is composed of the construction cost, loss cost and reliability cost. As constraints, the bus voltages and the feeder currents should be maintained within the standard level. The DDG output power should not be less than a ratio of its rated power because of efficiency. A hybrid optimization method, called modified discrete particle swarm optimization, is employed to solve this nonlinear and discrete optimization problem. A comparison is performed between the optimized solution based on planning of capacitors along with tap-changing transformer and line upgrading and when DDGs are included in the optimization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the effects of nanoscale ZnO reinforcement on the room temperature tensile and compressive response of monolithic Mg were studied. Experimental observations indicated strength properties improvement due to nanoscale ZnO addition. A maximum increment in tensile yield strength by similar to 55% and compressive yield strength by 90% (with reduced tension-compression asymmetry) was achieved when 0.8 vol.% ZnO nanoparticles were added to Mg. While the fracture strain values under tensile loads were found to increase significantly (by similar to 95%, in case of Mg-0.48ZnO), it remained largely unaffected under compressive loads. The microstructural characteristics studied in order to comprehend the mechanical response showed significant grain refinement due to grain boundary pinning effect of nano-ZnO particles which resulted in strengthening of Mg. Texture analysis using X-ray and EBSD methods indicated weakening of basal fibre texture in Mg/ZnO nanocomposites which contributed towards the reduction in tension-compression yield asymmetry and enhancement in tensile ductility when compared to pure Mg. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cylindrical cell model based on continuum theory for plastic constitutive behavior of short-fiber/particle reinforced composites is proposed. The composite is idealized as uniformly distributed periodic arrays of aligned cells, and each cell consists of a cylindrical inclusion surrounded by a plastically deforming matrix. In the analysis, the non-uniform deformation field of the cell is decomposed into the sum of the first order approximate field and the trial additional deformation field. The precise deformation field are determined based on the minimum strain energy principle. Systematic calculation results are presented for the influence of reinforcement volume fraction and shape on the overall mechanical behavior of the composites. The results are in good agreement with the existing finite element analyses and the experimental results. This paper attempts to stimulate the work to get the analytical constitutive relation of short-fiber/particle reinforced composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of polymerization of monomer reactant-polyimide (POI) as the interfacial agent on the interface characteristics, morphology features, and crystallization of poly(ether sulfone)/poly(phenylene sulfide) (PES/PPS) blends were investigated using a scanning electron microscope, FTIR, WAXD, and XPS surface analysis. It was found that the interfacial adhesion was enhanced, the particle size of the dispersed phase was reduced, and the miscibility between PES and PPS was improved by the addition of POI. It was also found that POI was an effective nucleation agent of the crystallization for PPS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An yttrium aluminum (YAl2) intermetallic compound ingot was prepared in an induction furnace under vacuum. The microstructure of YAl2 ingot was characterized by optical microscopy, scanning electron microscopy, and X-ray diffraction. The load bearing response of YAl2 intermetallic was investigated and compared with SiC ceramic by indentation combined with optical microscopy and scanning electron microscopy. Additionally, the tensile properties of the Mg–Li matrix composites reinforced with ultrafine YAl2 particles fabricated by planet ball milling were tested. The results show that the intermetallic compound ingot in this experiment is composed of a main face-centered-cubic structure YAl2 phase, a small amount of YAl phase, and minor Y and Al-rich phases. YAl2 intermetallic compound has excellent stability and shows better capability in crack resistance than SiC ceramic. The YAl2 intermetallic compound has better deformation compatibility with the Mg–14Li–3Al matrix than SiC reinforcement with the matrix, which leads to the superior resistance to crack for YAl2p/Mg–14Li–3Al composite compared to SiCp/Mg–14Li–3Al composite.