934 resultados para Particle diameters


Relevância:

70.00% 70.00%

Publicador:

Resumo:

AIMS The aim of the study was to examine whether differences in average diameter of low-density lipoprotein (LDL) particles were associated with total and cardiovascular mortality. METHODS AND RESULTS We studied 1643 subjects referred to coronary angiography, who did not receive lipid-lowering drugs. During a median follow-up of 9.9 years, 398 patients died, of these 246 from cardiovascular causes. We calculated average particle diameters of LDL from the composition of LDL obtained by β-quantification. When LDL with intermediate average diameters (16.5-16.8 nm) were used as reference category, the hazard ratios (HRs) adjusted for cardiovascular risk factors for death from any cause were 1.71 (95% CI: 1.31-2.25) and 1.24 (95% CI: 0.95-1.63) in patients with large (>16.8 nm) or small LDL (<16.5 nm), respectively. Adjusted HRs for death from cardiovascular causes were 1.89 (95% CI: 1.32-2.70) and 1.54 (95% CI: 1.06-2.12) in patients with large or small LDL, respectively. Patients with large LDL had higher concentrations of the inflammatory markers interleukin (IL)-6 and C-reactive protein than patients with small or intermediate LDL. Equilibrium density gradient ultracentrifugation revealed characteristic and distinct profiles of LDL particles in persons with large (approximately even distribution of intermediate-density lipoproteins and LDL-1 through LDL-6) intermediate (peak concentration at LDL-4) or small (peak concentration at LDL-6) average LDL particle diameters. CONCLUSIONS Calculated LDL particle diameters identify patients with different profiles of LDL subfractions. Both large and small LDL diameters are independently associated with increased risk mortality of all causes and, more so, due to cardiovascular causes compared with LDL of intermediate size.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The goal of this study was to test the hypothesis that the aggregated state of natural marine particles constrains the sensitivity of optical beam attenuation to particle size. An instrumented bottom tripod was deployed at the 12-m node of the Martha's Vineyard Coastal Observatory to monitor particle size distributions, particle size-versus-settling-velocity relationships, and the beam attenuation coefficient (c(p)) in the bottom boundary layer in September 2007. An automated in situ filtration system on the tripod collected 24 direct estimates of suspended particulate mass (SPM) during each of five deployments. On a sampling interval of 5 min, data from a Sequoia Scientific LISST 100x Type B were merged with data from a digital floc camera to generate suspended particle volume size distributions spanning diameters from approximately 2 mu m to 4 cm. Diameter-dependent densities were calculated from size-versus-settling-velocity data, allowing conversion of the volume size distributions to mass distributions, which were used to estimate SPM every 5 min. Estimated SPM and measured c(p) from the LISST 100x were linearly correlated throughout the experiment, despite wide variations in particle size. The slope of the line, which is the ratio of c(p) to SPM, was 0.22 g m(-2). Individual estimates of c(p):SPM were between 0.2 and 0.4 g m(-2) for volumetric median particle diameters ranging from 10 to 150 mu m. The wide range of values in c(p):SPM in the literature likely results from three factors capable of producing factor-of-two variability in the ratio: particle size, particle composition, and the finite acceptance angle of commercial beam-transmissometers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

With increasing industry interest in high pressure roll grinding (HPGR) technology, there is a strong incentive for improved understanding of the nature of grinding pressure that exists in the interior of a compressed particle bed. This corresponds to the crushing region of the HPGR. The relationship between applied pressure (stress) to the particle bed and induced pressure (stress) within particles and at contact points between particles is of particular interest. A detailed parametric investigation is beyond the scope of this exploratory paper. However, this exploratory investigation does suggest some interesting behaviour. The compressed particle bed within an 80 turn diameter piston has been modelled using Particle Flow Code for three dimensions. PFC3D is a discrete element code. The total number of simulated particles was 1225 and 2450 for two beds of different thickness. Particle diameters were uniformly distributed between 4 and 4.5 mm. The results of the simulations show that stress intensity within the simulated particle beds and within the observed particles increased with increase of the applied stress. The intensity of the average vertical stress in the selected particles tended to be comparable with the intensity of the pressure applied to the surface of particle bed and was only occasionally higher. However, the stress at contact points between particles could be several times higher. In a real crusher, such high stress amplification at contacts will quickly decrease due to local crushing and a resultant increase the size of the contact area. Therefore, its significance is likely to be relatively small in an industrial context. The modelling results also suggest that failure within the particle bed will progress from the crushing surface towards the depth of the bed. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The measurement of the charge distribution in laboratory generated aerosols particles was carried out. Four cases of electrostatic charge acquisition by aerosol particles were evaluated. In two of these cases. the charges acquired by the particles were naturally derived from the aerosol generation procedure itself, without using any additional charging method. Ill the other two cases, a corona charger and an impact charger were utilized as Supplementary methods for charge generation. Two types of aerosol generators were used in the dispersion of particles in the gas Stream: the vibrating orifice generator TSI model 3450 and the rotating plate generator TSI model 3433. In the vibrating orifice generator. a Solution of methylene blue Was used and the generated particles were mono-dispersed. Different mono-aerosols were generated with particle diameters varying from 6.0 x 10(-6) m to 1.4 x 10(-5) m. In the rotating plate generator, a poly-dispersed phosphate rock concentrate with Stokes mean diameter of 1.30 x 10(-6) m and size range between 1.5 x 10(-7) m and 8.0 x 10(-6) m Was utilized as powder material in all tests. In the tests performed with the mono-dispersed particles. the median charges of the particles varied between -3.0 x 10-(16) C and -5.0 x 10(-18) degrees C and a weak dependence between particle size and charge was observed. The particles were predominantly negatively charged. In the tests with the poly-dispersed particles the median charges varied fairly linearly with the particle diameter and were negative. The order of magnitude of the results obtained is in accordance with data reported in the literature. The charge distribution, in this case, was wider, so that an appreciable amount of particles were positively charged. The relative spread of the distribution varied with the charging method. It was also noticed that the corona charger acted very effectively in charging the particles. (C) 2008 Elsevier BY. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Characterisation of nanoparticles (NP) based on size distribution, surface area, reactivity, and aggregation status of nanoparticles (NP) are of prime importance because they are usually closely related to toxicity. To date, most of the toxicity studies are quite time and money consuming. In the present study we report the oxidative properties of a panel of various NP (four Carbonaceous, nine Metal oxides, and one Metal as showed in Table 1) assessed with an acellular reactivity test measuring dithiothreitol (DTT) consumption (Sauvain et al. 2008). Such a test allows determining the ability of NP to catalyse the transfer of electrons from DTT to oxygen. DTT is used as a reductant species. NP were diluted and sonicated in Tween 80® to a final concentration of 50 g/mL. Printex 90 was diluted 5 times before doing the DTT assay because of its expected higher activity. Suspensions were characterised for NP size distribution by Nanoparticle Tracking Analysis (Nanosight©). Fresh solutions were incubated with DTT (100 μM). Aliquots were taken every 5 min and the remaining DTT was determined by reacting it with DTNB. The reaction rate was determined for NP suspensions and blank in parallel. The mean Brownian size distribution of NP agglomerates in suspension is presented in Table 1. D values correspond to 10th, and 50th percentiles of the particle diameters. All the NP agglomerated in Tween 80 with a D50 size corresponding to at least twice their primary size, except for Al2O3 (300 nm). The DTT test showed Printex 90 sample to be the most reactive one, followed by Diesel EPA and Nanotubes. Most of the metallic NP was nonresponding toward this test, except for NiO and Ag which reacted positively and ZnO which presented the most negative reactivity (see Figure 1). This last observation suggests that electron transfer between DTT and oxygen is hindered in presence of ZnO compared with the blank. Such "stabilization" could be attributable to ZnO dissolution and complexation between Zn2+ ions and DTT.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Miniature diffusion size classifiers (miniDiSC) are novel handheld devices to measure ultrafine particles (UFP). UFP have been linked to the development of cardiovascular and pulmonary diseases; thus, detection and quantification of these particles are important for evaluating their potential health hazards. As part of the UFP exposure assessments of highwaymaintenance workers in western Switzerland, we compared a miniDiSC with a portable condensation particle counter (P-TRAK). In addition, we performed stationary measurements with a miniDiSC and a scanning mobility particle sizer (SMPS) at a site immediately adjacent to a highway. Measurements with miniDiSC and P-TRAK correlated well (correlation of r = 0.84) but average particle numbers of the miniDiSC were 30%âeuro"60% higher. This difference was significantly increased for mean particle diameters below 40 nm. The correlation between theminiDiSC and the SMPSduring stationary measurements was very high (r = 0.98) although particle numbers from the miniDiSC were 30% lower. Differences between the three devices were attributed to the different cutoff diameters for detection. Correction for this size dependent effect led to very similar results across all counters.We did not observe any significant influence of other particle characteristics. Our results suggest that the miniDiSC provides accurate particle number concentrations and geometric mean diameters at traffic-influenced sites, making it a useful tool for personal exposure assessment in such settings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Magnetic, structural, and transport properties of as quenched and annealed Co10Cu90 samples have been investigated using x¿ray diffraction and a SQUID magnetometer. The largest value of MR change was observed for the as¿quenched sample annealed at 450°C for 30 min. The magnetic and transport properties closely correlate with the microstructure, mainly with Co magnetic particle size and its distribution. For thermal annealing the as quenched samples below 600°C, the Co particle diameters increase from 4.0 to 6.0 nm with a magnetoresistance (MR) drop from 33.0% to 5.0% at 10 K. Comparison with the theory indicates that the interfacial electron spin¿dependent scattering mechanism correlates with GMR for Co particle diameters up to about 6.0 nm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A laboratory investigation was undertaken to determine the limiting model Reynolds number above which the scour behavior of rock protected structures can be reproduced in hydraulic models scaled according to the Froude criterion. A submerged jet was passed over an initially full scour pocket containing uniform glass spheres and the rate of scour was measured as a function of time. The dimensions of the scour pocket and jet and the particle diameters were varied as needed to maintain strict geometric similarity. For each of two different Froude numbers the Reynolds number was varied over a wide range. The normalized scour rate was found to be practically independent of the Reynolds number, R, (based on the jet velocity and particle diameter) at values of R above about 2.5 x 10^3, and to decrease with Rat smaller values. A grid placed in the jet was found to have a very strong effect on the scour rate. In an attempt to explain the effect of R on the scour behavior, turbulent pressure and velocity fluctuations were measured in air flows and water flows, respectively, over rigid scour pockets having the same geometry as those formed in the scour experiments. The normalized spectra of the fluctuations were found to be nearly independent of R, but the flow pattern was found to be very sensitive to the inlet condition, the jet deflecting upward or downward in a not wholly explainable manner. This indicates that scour behavior can be modeled only if the approach flow is also accurately modeled.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The magnetic structure of NiFe(2)O(4) nanoparticles has been investigated by means of Mossbauer spectra at T=4.2 K in applied fields up to 12 T. Four samples were studied, with mean particle diameters ranging from 4.3 to 8.9 nm. All spectra could be decomposed into three sextets, two corresponding to the ferrimagnetic sublattices of Fe ions in the spinel structure (core) and the third one to randomly frozen spins near the particle surface (shell). The shell thickness, calculated from the fraction of disordered spins, was found to be about one-third of the particle radius at H (app)=e0 and to decrease with the applied field toward a common limit of similar to 0.4 nm. The mean canting angle relative to the field was also found to decrease for increasing fields, at a rate inversely correlated to the particle size.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A acurácia da análise granulométrica depende da obtenção de suspensões de solo completamente dispersas e estáveis para possibilitar a separação das suas frações granulométricas. O objetivo do presente trabalho foi avaliar a eficácia da adição de quantidades e tamanhos de grãos de areia na fase de dispersão da análise granulométrica de solos, visando à maior acurácia na obtenção dos resultados da análise granulométrica. Os solos utilizados foram: Latossolo Vermelho eutroférrico (LVef), LatossoloVermelho acriférrico (LVwf), Latossolo Vermelho eutrófico (LVe), Argissolo Vermelho-Amarelo eutrófico (PVAe) e Nitossolo Vermelho eutroférrico (NVef). A dispersão das amostras dos solos foi realizada por meio da adição de hidróxido de sódio e agitação rotativa (60 rpm) por 16 h. O delineamento experimental adotado foi o inteiramente casualizado, com esquema fatorial 6 x 2, com três repetições. Os tratamentos foram constituídos por seis quantidades (0, 5, 10, 15, 20 e 25 g) e dois diâmetros (2,0-1,0 e 1,0-0,5 mm) de areia, adicionados na fase de dispersão da análise granulométrica dos solos. de acordo com as equações ajustadas, a adição de areia com diâmetro entre 1,0 e 0,5 mm nas quantidades de 21,4 g para LVef, 19,6 g para LVwf e 25,8 g para NVef proporciona, respectivamente para esses solos, aumentos de 50, 38 e 14,5 % nos teores de argila. No LVe e no PVAe não se justifica a adição de areia na análise granulométrica, pois esses solos não apresentaram problemas de dispersão. Os resultados demonstram que a adição de 25 g de areia, com diâmetro entre 1,0 e 0,5 mm, na fase de dispersão da análise granulométrica de solos argilosos com altos teores de óxidos de Fe e com dificuldades de dispersão, é eficiente para promover efetiva dispersão das partículas primárias do solo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite the relatively organized cashew (Anacardium occidentale L.) productive chain and the number of cashew derivatives found in the market, it is estimated that over 90% of the cashew peduncle is wasted. A possible strategy for a better commercial exploitation of this agroindustrial commodity would be the production of spray dried cashew pulp. Thus, this paper approaches the yellow cashew pulp spray drying process and the final product evaluation. Based on that, the shelf life of the spray dried cashew pulp packed in different packaging was evaluated. Drying was conducted in two drying temperatures (140 °C to 150 °C) and two concentrations of Arabic gum (AG, 15% and 25%), which summed four experimental groups. The drying performance was evaluated as well as the physicochemical characteristics (moisture, water activity, total soluble solids, pH, density, solubility, particle diameter, hygroscopicity, degree of caking, color, scanning electronic microscopy and X-ray diffraction), composition (protein, ash, fat and sugars) and bioactive and functional value (total phenolic compounds, carotenoids, ascorbic acid and antioxidant activity) of the final products. Results showed spray drying efficiency higher than 65% for all experiments, mainly for the C4 group (150 °C and 25% AG) which reached efficiency of 93.4%. It was also observed high solubility (94.7% to 97.9%) and the groups with lower hygroscopicity (5.8% and 6.5%) were those with the highest proportion of drying coadjuvant. The particle diameters ranged between 14.7 μm and 30.2 μm and increased with the proportion of AG. When comparing the product before and after spray drying, the drying impact was evident. However, despite the observed losses, dried yellow cashew showed high phenolic concentration (from 235.9 to 380.4 mg GAE eq / 100 g DM), carotenoids between 0.22 and 0.49 mg/100 g DM and remarkable ascorbic acid levels (852.4 to 1346.2 mg/100 g DM), in addition to antioxidant activity ranging from 12.9 to 16.4 μmol TE/ g DM. The shelf life study revealed decreased phenolic content over time associated to a slight water activity increase. Overall, our results unveil the technological and bioactive potential of dried yellow cashew as a functional ingredient to be used in food formulations or as a ready-to-use product. The technological approach presented here can serve as an efficient strategy for a rational use of the cashew apple, avoiding its current underutilization

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to develop multiparticulate therapeutic systems of alginate (AL) and chitosan (CS) containing triamcinolone (TC) to colonic drug delivery. Multiparticulate systems of AL-CS, prepared by a complex coacervation/ionotropic gelation method, were characterized for morphological and size aspects, swelling degree, encapsulation content and efficiency, in vitro release profile in different environments simulating the gastrointestinal tract (GIT) and in vivo gastrointestinal transit. The systems showed suitable morphological characteristics with particle diameters of approximately 1.6 mm. In simulated gastric environment, at pH 1.2, the capsules presented low degree of swelling and in vitro release of drug. A higher swelling degree was observed in simulated enteric environment, pH 7.5, followed by erosion. Practically all the drug was released after 6 h of in vitro assay. The in vivo analysis of gastrointestinal transit, carried out in rats, showed that the systems passed practically intact through the stomach and did not show the same profile of swelling observed in the in vitro tests. It was possible to verify the presence of capsules in the colonic region of GIT. The results indicate that AL-CS multiparticulate systems can be used as an adjuvant for the preparation of therapeutic systems to colonic delivery of drugs. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The designs of filters made by granular material or textile are mainly based on empirical or semi empirical retention criteria according to Terzaghi proposal, which compares particle diameter of the soil base with the filter porous spaces. Silveira in 1965, proposed one rational design retention criteria based on the probability of a particle from the soil base, carried by one dimensional flow, be restrained by the porous of the filter while trying to pass through its thickness. This new innovating theory, besides of being very simple, it is not frequently used for granular filters since the necessary parameters for the design has to be determine for each natural material. However, for textile this problem no longer exists because it has quality control during manufacturing and the necessary characteristics properties of the product are specify in the product catalog. This work presents one adaptation of the Silveira theory for textile filters and the step-by-step procedure for the determination of the characteristics properties of the textile products necessary for the design. This new procedure permits the determination of the confiability level of retention that one specific particle diameter form the soil base has for one specified textile. One complete example is presented to demonstrate the simplicity of the method proposed and how the textile characteristics are obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this work is to predict the minimum fluidization velocity Umf in a gas-solid fluidized bed. The study was carried out with an experimental apparatus for sand particles with diameters between 310μm and 590μm, and density of 2,590kg/m3. The experimental results were compared with numerical simulations developed in MFIX (Multiphase Flow with Interphase eXchange) open source code [1], for three different sizes of particles: 310mum, 450μm and 590μm. A homogeneous mixture with the three kinds of particles was also studied. The influence of the particle diameter was presented and discussed. The Ergun equation was also used to describe the minimum fluidization velocity. The experimental data presented a good agreement with Ergun equation and numerical simulations. Copyright © 2011 by ASME.