996 resultados para Particle collisions
Resumo:
Perfectly hard particles are those which experience an infinite repulsive force when they overlap, and no force when they do not overlap. In the hard-particle model, the only static state is the isostatic state where the forces between particles are statically determinate. In the flowing state, the interactions between particles are instantaneous because the time of contact approaches zero in the limit of infinite particle stiffness. Here, we discuss the development of a hard particle model for a realistic granular flow down an inclined plane, and examine its utility for predicting the salient features both qualitatively and quantitatively. We first discuss Discrete Element simulations, that even very dense flows of sand or glass beads with volume fraction between 0.5 and 0.58 are in the rapid flow regime, due to the very high particle stiffness. An important length scale in the shear flow of inelastic particles is the `conduction length' delta = (d/(1 - e(2))(1/2)), where d is the particle diameter and e is the coefficient of restitution. When the macroscopic scale h (height of the flowing layer) is larger than the conduction length, the rates of shear production and inelastic dissipation are nearly equal in the bulk of the flow, while the rate of conduction of energy is O((delta/h)(2)) smaller than the rate of dissipation of energy. Energy conduction is important in boundary layers of thickness delta at the top and bottom. The flow in the boundary layer at the top and bottom is examined using asymptotic analysis. We derive an exact relationship showing that the a boundary layer solution exists only if the volume fraction in the bulk decreases as the angle of inclination is increased. In the opposite case, where the volume fraction increases as the angle of inclination is increased, there is no boundary layer solution. The boundary layer theory also provides us with a way of understanding the cessation of flow when at a given angle of inclination when the height of the layer is decreased below a value h(stop), which is a function of the angle of inclination. There is dissipation of energy due to particle collisions in the flow as well as due to particle collisions with the base, and the fraction of energy dissipation in the base increases as the thickness decreases. When the shear production in the flow cannot compensate for the additional energy drawn out of the flow due to the wall collisions, the temperature decreases to zero and the flow stops. Scaling relations can be derived for h(stop) as a function of angle of inclination.
Resumo:
The effect of fluid velocity fluctuations on the dynamics of the particles in a turbulent gas–solid suspension is analysed in the low-Reynolds-number and high Stokes number limits, where the particle relaxation time is long compared with the correlation time for the fluid velocity fluctuations, and the drag force on the particles due to the fluid can be expressed by the modified Stokes law. The direct numerical simulation procedure is used for solving the Navier–Stokes equations for the fluid, the particles are modelled as hard spheres which undergo elastic collisions and a one-way coupling algorithm is used where the force exerted by the fluid on the particles is incorporated, but not the reverse force exerted by the particles on the fluid. The particle mean and root-mean-square (RMS) fluctuating velocities, as well as the probability distribution function for the particle velocity fluctuations and the distribution of acceleration of the particles in the central region of the Couette (where the velocity profile is linear and the RMS velocities are nearly constant), are examined. It is found that the distribution of particle velocities is very different from a Gaussian, especially in the spanwise and wall-normal directions. However, the distribution of the acceleration fluctuation on the particles is found to be close to a Gaussian, though the distribution is highly anisotropic and there is a correlation between the fluctuations in the flow and gradient directions. The non-Gaussian nature of the particle velocity fluctuations is found to be due to inter-particle collisions induced by the large particle velocity fluctuations in the flow direction. It is also found that the acceleration distribution on the particles is in very good agreement with the distribution that is calculated from the velocity fluctuations in the fluid, using the Stokes drag law, indicating that there is very little correlation between the fluid velocity fluctuations and the particle velocity fluctuations in the presence of one-way coupling. All of these results indicate that the effect of the turbulent fluid velocity fluctuations can be accurately represented by an anisotropic Gaussian white noise.
Resumo:
A wave propagation in a complex dusty plasma with negative ions was considered. The relevant processes such as ionization, electron attachment, diffusion, positive-negative ion recombination, plasma particle collisions, as well as elastic Coulomb and inelastic dust-charging collisions were taken self-consistently. It was found that the equilibrium of the plasma as well as the propagation of ion waves were modified to various degrees by these effects.
Resumo:
The velocity distribution function for the steady shear flow of disks (in two dimensions) and spheres (in three dimensions) in a channel is determined in the limit where the frequency of particle-wall collisions is large compared to particle-particle collisions. An asymptotic analysis is used in the small parameter epsilon, which is naL in two dimensions and na(2)L in three dimensions, where; n is the number density of particles (per unit area in two dimensions and per unit volume in three dimensions), L is the separation of the walls of the channel and a is the particle diameter. The particle-wall collisions are inelastic, and are described by simple relations which involve coefficients of restitution e(t) and e(n) in the tangential and normal directions, and both elastic and inelastic binary collisions between particles are considered. In the absence of binary collisions between particles, it is found that the particle velocities converge to two constant values (u(x), u(y)) = (+/-V, O) after repeated collisions with the wall, where u(x) and u(y) are the velocities tangential and normal to the wall, V = (1 - e(t))V-w/(1 + e(t)), and V-w and -V-w, are the tangential velocities of the walls of the channel. The effect of binary collisions is included using a self-consistent calculation, and the distribution function is determined using the condition that the net collisional flux of particles at any point in velocity space is zero at steady state. Certain approximations are made regarding the velocities of particles undergoing binary collisions :in order to obtain analytical results for the distribution function, and these approximations are justified analytically by showing that the error incurred decreases proportional to epsilon(1/2) in the limit epsilon --> 0. A numerical calculation of the mean square of the difference between the exact flux and the approximate flux confirms that the error decreases proportional to epsilon(1/2) in the limit epsilon --> 0. The moments of the velocity distribution function are evaluated, and it is found that [u(x)(2)] --> V-2, [u(y)(2)] similar to V-2 epsilon and -[u(x)u(y)] similar to V-2 epsilon log(epsilon(-1)) in the limit epsilon --> 0. It is found that the distribution function and the scaling laws for the velocity moments are similar for both two- and three-dimensional systems.
Resumo:
The velocity distribution for a vibrated granular material is determined in the dilute limit where the frequency of particle collisions with the vibrating surface is large compared to the frequency of binary collisions. The particle motion is driven by the source of energy due to particle collisions with the vibrating surface, and two dissipation mechanisms-inelastic collisions and air drag-are considered. In the latter case, a general form for the drag force is assumed. First, the distribution function for the vertical velocity for a single particle colliding with a vibrating surface is determined in the limit where the dissipation during a collision due to inelasticity or between successive collisions due to drag is small compared to the energy of a particle. In addition, two types of amplitude functions for the velocity of the surface, symmetric and asymmetric about zero velocity, are considered. In all cases, differential equations for the distribution of velocities at the vibrating surface are obtained using a flux balance condition in velocity space, and these are solved to determine the distribution function. It is found that the distribution function is a Gaussian distribution when the dissipation is due to inelastic collisions and the amplitude function is symmetric, and the mean square velocity scales as [[U-2](s)/(1 - e(2))], where [U-2](s) is the mean square velocity of the vibrating surface and e is the coefficient of restitution. The distribution function is very different from a Gaussian when the dissipation is due to air drag and the amplitude function is symmetric, and the mean square velocity scales as ([U-2](s)g/mu(m))(1/(m+2)) when the acceleration due to the fluid drag is -mu(m)u(y)\u(y)\(m-1), where g is the acceleration due to gravity. For an asymmetric amplitude function, the distribution function at the vibrating surface is found to be sharply peaked around [+/-2[U](s)/(1-e)] when the dissipation is due to inelastic collisions, and around +/-[(m +2)[U](s)g/mu(m)](1/(m+1)) when the dissipation is due to fluid drag, where [U](s) is the mean velocity of the surface. The distribution functions are compared with numerical simulations of a particle colliding with a vibrating surface, and excellent agreement is found with no adjustable parameters. The distribution function for a two-dimensional vibrated granular material that includes the first effect of binary collisions is determined for the system with dissipation due to inelastic collisions and the amplitude function for the velocity of the vibrating surface is symmetric in the limit delta(I)=(2nr)/(1 - e)much less than 1. Here, n is the number of particles per unit width and r is the particle radius. In this Limit, an asymptotic analysis is used about the Limit where there are no binary collisions. It is found that the distribution function has a power-law divergence proportional to \u(x)\((c delta l-1)) in the limit u(x)-->0, where u(x) is the horizontal velocity. The constant c and the moments of the distribution function are evaluated from the conservation equation in velocity space. It is found that the mean square velocity in the horizontal direction scales as O(delta(I)T), and the nontrivial third moments of the velocity distribution scale as O(delta(I)epsilon(I)T(3/2)) where epsilon(I) = (1 - e)(1/2). Here, T = [2[U2](s)/(1 - e)] is the mean square velocity of the particles.
Resumo:
We present an improved procedure on the approach to determine the stability of polystyrene spheres at microscopic particle levels by means of artificially induced particle collisions with the aid of optical tweezers [J.Chem.Phys. 119, 2399(2003)]. The basic consideration on this new development is that the major contribution to the sticking probability for a particle pair caught into the optical trap for a short period is from its single collision; therefore, if the trapping duration for the pair is taken to be short, the accumulated sticking probability will be a good approximation for the single collision. The experimental procedure associated with this approximation does not resort to exactly controlling the short trapping duration or request the trapping duration correction as previously reported and therefore it is more practical and applicable for broader range of the stability ratio. The experimental results under different electrolyte concentrations by the new procedure are consistent with those from the turbidity measurements.
Resumo:
本论文工作主要运用经典与半经典理论研究了重粒子碰撞过程。运用分子库仑过垒模型和反应窗理论研究了低能区和中间能区碰撞体系单电子、双电子及三电子俘获过程的态选择微分截面,详细讨论了反应窗理论的有效性和局限性。最后计算了微分截面关于散射角的分布。分别运用经典轨迹蒙特卡罗方法和双中心原子轨道强耦合方法,研究了4-100 碰撞体系的激发、俘获和失去电子总截面。最后,简要讨论了进一步运用经典轨迹蒙特卡罗方法和双中心原子轨道强耦合方法研究重粒子碰撞问题的工作方向
Resumo:
Heavy particle collisions, in particular low-energy ion-atom collisions, are amenable to semiclassical JWKB phase integral analysis in the complex plane of the internuclear separation. Analytic continuation in this plane requires due attention to the Stokes phenomenon which parametrizes the physical mechanisms of curve crossing, non-crossing, the hybrid Nikitin model, rotational coupling and predissociation. Complex transition points represent adiabatic degeneracies. In the case of two or more such points, the Stokes constants may only be completely determined by resort to the so-called comparison- equation method involving, in particular, parabolic cylinder functions or Whittaker functions and their strong-coupling asymptotics. In particular, the Nikitin model is a two transition-point one-double-pole problem in each half-plane corresponding to either ingoing or outgoing waves. When the four transition points are closely clustered, new techniques are required to determine Stokes constants. However, such investigations remain incomplete, A model problem is therefore solved exactly for scattering along a one-dimensional z-axis. The energy eigenvalue is b(2)-a(2) and the potential comprises -z(2)/2 (parabolic) and -a(2) + b(2)/2z(2) (centrifugal/centripetal) components. The square of the wavenumber has in the complex z-plane, four zeros each a transition point at z = +/-a +/- ib and has a double pole at z = 0. In cases (a) and (b), a and b are real and unitarity obtains. In case (a) the reflection and transition coefficients are parametrized by exponentials when a(2) + b(2) > 1/2. In case (b) they are parametrized by trigonometrics when a(2) + b(2) <1/2 and total reflection is achievable. In case (c) a and b are complex and in general unitarity is not achieved due to loss of flux to a continuum (O'Rourke and Crothers, 1992 Proc. R. Sec. 438 1). Nevertheless, case (c) coefficients reduce to (a) or (b) under appropriate limiting conditions. Setting z = ht, with h a real constant, an attempt is made to model a two-state collision problem modelled by a pair of coupled first-order impact parameter equations and an appropriate (T) over tilde-tau relation, where (T) over tilde is the Stueckelberg variable and tau is the reduced or scaled time. The attempt fails because (T) over tilde is an odd function of tau, which is unphysical in a real collision problem. However, it is pointed out that by applying the Kummer exponential model to each half-plane (O'Rourke and Crothers 1994 J. Phys. B: At. Mel. Opt. Phys. 27 2497) the current model is in effect extended to a collision problem with four transition points and a double pole in each half-plane. Moreover, the attempt in itself is not a complete failure since it is shown that the result is a perfect diabatic inelastic collision for a traceless Hamiltonian matrix, or at least when both diagonal elements are odd and the off-diagonal elements equal and even.
Resumo:
Pós-graduação em Educação para a Ciência - FC
Resumo:
Because of physical processes ranging from microscopic particle collisions to macroscopic hydrodynamic fluctuations, any plasma in thermal equilibrium emits gravitational waves. For the largest wavelengths the emission rate is proportional to the shear viscosity of the plasma. In the Standard Model at 0T > 16 GeV, the shear viscosity is dominated by the most weakly interacting particles, right-handed leptons, and is relatively large. We estimate the order of magnitude of the corresponding spectrum of gravitational waves. Even though at small frequencies (corresponding to the sub-Hz range relevant for planned observatories such as eLISA) this background is tiny compared with that from non-equilibrium sources, the total energy carried by the high-frequency part of the spectrum is non-negligible if the production continues for a long time. We suggest that this may constrain (weakly) the highest temperature of the radiation epoch. Observing the high-frequency part directly sets a very ambitious goal for future generations of GHz-range detectors.