982 resultados para Particle Motion
Resumo:
Experimental particle dispersion patterns in a plane wake flow at a high Reynolds number have been predicted numerically by discrete vortex method (Phys. Fluids A 1992; 4:2244-2251; Int. J. Multiphase Flow 2000; 26:1583-1607). To address the particle motion at a moderate Reynolds number, spectral element method is employed to provide an instantaneous wake flow field for particle dynamics equations, which are solved to make a detail classification of the patterns in relation to the Stokes and Froude numbers. It is found that particle motion features only depend on the Stokes number at a high Froude number and depend on both numbers at a low Froude number. A ratio of the Stokes number to squared Froude number is introduced and threshold values of this parameter are evaluated that delineate the different regions of particle behavior. The parameter describes approximately the gravitational settling velocity divided by the characteristic velocity of wake flow. In order to present effects of particle density but preserve rigid sphere, hollow sphere particle dynamics in the plane wake flow is investigated. The evolution of hollow particle motion patterns for the increase of equivalent particle density corresponds to that of solid particle motion patterns for the decrease of particle size. Although the thresholds change a little, the parameter can still make a good qualitative classification of particle motion patterns as the inner diameter changes.
Resumo:
The motion of a single Brownian particle of arbitrary size through a dilute colloidal dispersion of neutrally buoyant bath spheres of another characteristic size in a Newtonian solvent is examined in two contexts. First, the particle in question, the probe particle, is subject to a constant applied external force drawing it through the suspension as a simple model for active and nonlinear microrheology. The strength of the applied external force, normalized by the restoring forces of Brownian motion, is the Péclet number, Pe. This dimensionless quantity describes how strongly the probe is upsetting the equilibrium distribution of the bath particles. The mean motion and fluctuations in the probe position are related to interpreted quantities of an effective viscosity of the suspension. These interpreted quantities are calculated to first order in the volume fraction of bath particles and are intimately tied to the spatial distribution, or microstructure, of bath particles relative to the probe. For weak Pe, the disturbance to the equilibrium microstructure is dipolar in nature, with accumulation and depletion regions on the front and rear faces of the probe, respectively. With increasing applied force, the accumulation region compresses to form a thin boundary layer whose thickness scales with the inverse of Pe. The depletion region lengthens to form a trailing wake. The magnitude of the microstructural disturbance is found to grow with increasing bath particle size -- small bath particles in the solvent resemble a continuum with effective microviscosity given by Einstein's viscosity correction for a dilute dispersion of spheres. Large bath particles readily advect toward the minimum approach distance possible between the probe and bath particle, and the probe and bath particle pair rotating as a doublet is the primary mechanism by which the probe particle is able to move past; this is a process that slows the motion of the probe by a factor of the size ratio. The intrinsic microviscosity is found to force thin at low Péclet number due to decreasing contributions from Brownian motion, and force thicken at high Péclet number due to the increasing influence of the configuration-averaged reduction in the probe's hydrodynamic self mobility. Nonmonotonicity at finite sizes is evident in the limiting high-Pe intrinsic microviscosity plateau as a function of bath-to-probe particle size ratio. The intrinsic microviscosity is found to grow with the size ratio for very small probes even at large-but-finite Péclet numbers. However, even a small repulsive interparticle potential, that excludes lubrication interactions, can reduce this intrinsic microviscosity back to an order one quantity. The results of this active microrheology study are compared to previous theoretical studies of falling-ball and towed-ball rheometry and sedimentation and diffusion in polydisperse suspensions, and the singular limit of full hydrodynamic interactions is noted.
Second, the probe particle in question is no longer subject to a constant applied external force. Rather, the particle is considered to be a catalytically-active motor, consuming the bath reactant particles on its reactive face while passively colliding with reactant particles on its inert face. By creating an asymmetric distribution of reactant about its surface, the motor is able to diffusiophoretically propel itself with some mean velocity. The effects of finite size of the solute are examined on the leading order diffusive microstructure of reactant about the motor. Brownian and interparticle contributions to the motor velocity are computed for several interparticle interaction potential lengths and finite reactant-to-motor particle size ratios, with the dimensionless motor velocity increasing with decreasing motor size. A discussion on Brownian rotation frames the context in which these results could be applicable, and future directions are proposed which properly incorporate reactant advection at high motor velocities.
Resumo:
This is a two-part thesis concerning the motion of a test particle in a bath. In part one we use an expansion of the operator PLeit(1-P)LLP to shape the Zwanzig equation into a generalized Fokker-Planck equation which involves a diffusion tensor depending on the test particle's momentum and the time.
In part two the resultant equation is studied in some detail for the case of test particle motion in a weakly coupled Lorentz Gas. The diffusion tensor for this system is considered. Some of its properties are calculated; it is computed explicitly for the case of a Gaussian potential of interaction.
The equation for the test particle distribution function can be put into the form of an inhomogeneous Schroedinger equation. The term corresponding to the potential energy in the Schroedinger equation is considered. Its structure is studied, and some of its simplest features are used to find the Green's function in the limiting situations of low density and long time.
Resumo:
The nonlinear aspects of longitudinal motion of interacting point masses in a lattice are revisited, with emphasis on the paradigm of charged dust grains in a dusty plasma (DP) crystal. Different types of localized excitations, predicted by nonlinear wave theories, are reviewed and conditions for their occurrence (and characteristics) in DP crystals are discussed. Making use of a general formulation, allowing for an arbitrary (e.g. the Debye electrostatic or else) analytic potential form phi(r) and arbitrarily long site-to-site range of interactions, it is shown that dust-crystals support nonlinear kink-shaped localized excitations propagating at velocities above the characteristic DP lattice sound speed v(0). Both compressive and rarefactive kink-type excitations are predicted, depending on the physical parameter values, which represent pulse- (shock-)like coherent structures for the dust grain relative displacement. Furthermore, the existence of breather-type localized oscillations, envelope-modulated wavepackets and shocks is established. The relation to previous results on atomic chains as well as to experimental results on strongly-coupled dust layers in gas discharge plasmas is discussed.
Resumo:
A multivariate Fokker-Planck-type kinetic equation modeling a test - panicle weakly interacting with an electrostatic plasma. in the presence of a magnetic field B . is analytically solved in an Ornstein - Uhlenbeck - type approximation. A new set of analytic expressions are obtained for variable moments and panicle density as a function of time. The process is diffusive.
Resumo:
This technical report discusses the application of the Lattice Boltzmann Method (LBM) and Cellular Automata (CA) simulation in fluid flow and particle deposition. The current work focuses on incompressible flow simulation passing cylinders, in which we incorporate the LBM D2Q9 and CA techniques to simulate the fluid flow and particle loading respectively. For the LBM part, the theories of boundary conditions are studied and verified using the Poiseuille flow test. For the CA part, several models regarding simulation of particles are explained. And a new Digital Differential Analyzer (DDA) algorithm is introduced to simulate particle motion in the Boolean model. The numerical results are compared with a previous probability velocity model by Masselot [Masselot 2000], which shows a satisfactory result.
Resumo:
"Issued: September 5, 1963"--Cover ; "February 1963"--Title page.
Resumo:
"U.S. Atomic Energy Commission, Plowshare Program ; Project Gnome, Carlsbad, New Mexico, December 10, 1961"--Cover.
Resumo:
Small particles and their dynamics are of widespread interest due both to their unique properties and their ubiquity. Here, we investigate several classes of small particles: colloids, polymers, and liposomes. All these particles, due to their size on the order of microns, exhibit significant similarity in that they are large enough to be visualized in microscopes, but small enough to be significantly influenced by thermal (or Brownian) motion. Further, similar optical microscopy and experimental techniques are commonly employed to investigate all these particles. In this work, we develop single particle tracking techniques, which allow thorough characterization of individual particle dynamics, observing many behaviors which would be overlooked by methods which time or ensemble average. The various particle systems are also similar in that frequently, the signal-to-noise ratio represented a significant concern. In many cases, development of image analysis and particle tracking methods optimized to low signal-to-noise was critical to performing experimental observations. The simplest particles studied, in terms of their interaction potentials, were chemically homogeneous (though optically anisotropic) hard-sphere colloids. Using these spheres, we explored the comparatively underdeveloped conjunction of translation and rotation and particle hydrodynamics. Developing off this, the dynamics of clusters of spherical colloids were investigated, exploring how shape anisotropy influences the translation and rotation respectively. Transitioning away from uniform hard-sphere potentials, the interactions of amphiphilic colloidal particles were explored, observing the effects of hydrophilic and hydrophobic interactions upon pattern assembly and inter-particle dynamics. Interaction potentials were altered in a different fashion by working with suspensions of liposomes, which, while homogeneous, introduce the possibility of deformation. Even further degrees of freedom were introduced by observing the interaction of particles and then polymers within polymer suspensions or along lipid tubules. Throughout, while examination of the trajectories revealed that while by some measures, the averaged behaviors accorded with expectation, often closer examination made possible by single particle tracking revealed novel and unexpected phenomena.
Resumo:
The gathering systems of crude oil are greatly endangered by the fine sand and soil in oil. Up to now , how to separate sand from the viscid oil is still a technical problem for oil production home or abroad. Recently , Institute of Mechanics in Chinese Academy of Sciences has developed a new type of oil-sand separator , which has been applied successfully in oil field in situ. In this paper, the numerical method of vortex-stream function is used to predict the liquid-solid separating course and the efficiency for this oil-sand separator. Results show that the viscosity and particle diameter have much influence on the particle motion. The calculating separating efficiency is compared with that of experiment and indicates that this method can be used to model the complex two-phase flow in the separator.
Resumo:
Large-eddy simulation (LES) has emerged as a promising tool for simulating turbulent flows in general and, in recent years,has also been applied to the particle-laden turbulence with some success (Kassinos et al., 2007). The motion of inertial particles is much more complicated than fluid elements, and therefore, LES of turbulent flow laden with inertial particles encounters new challenges. In the conventional LES, only large-scale eddies are explicitly resolved and the effects of unresolved, small or subgrid scale (SGS) eddies on the large-scale eddies are modeled. The SGS turbulent flow field is not available. The effects of SGS turbulent velocity field on particle motion have been studied by Wang and Squires (1996), Armenio et al. (1999), Yamamoto et al. (2001), Shotorban and Mashayek (2006a,b), Fede and Simonin (2006), Berrouk et al. (2007), Bini and Jones (2008), and Pozorski and Apte (2009), amongst others. One contemporary method to include the effects of SGS eddies on inertial particle motions is to introduce a stochastic differential equation (SDE), that is, a Langevin stochastic equation to model the SGS fluid velocity seen by inertial particles (Fede et al., 2006; Shotorban and Mashayek, 2006a; Shotorban and Mashayek, 2006b; Berrouk et al., 2007; Bini and Jones, 2008; Pozorski and Apte, 2009).However, the accuracy of such a Langevin equation model depends primarily on the prescription of the SGS fluid velocity autocorrelation time seen by an inertial particle or the inertial particle–SGS eddy interaction timescale (denoted by $\delt T_{Lp}$ and a second model constant in the diffusion term which controls the intensity of the random force received by an inertial particle (denoted by C_0, see Eq. (7)). From the theoretical point of view, dTLp differs significantly from the Lagrangian fluid velocity correlation time (Reeks, 1977; Wang and Stock, 1993), and this carries the essential nonlinearity in the statistical modeling of particle motion. dTLp and C0 may depend on the filter width and particle Stokes number even for a given turbulent flow. In previous studies, dTLp is modeled either by the fluid SGS Lagrangian timescale (Fede et al., 2006; Shotorban and Mashayek, 2006b; Pozorski and Apte, 2009; Bini and Jones, 2008) or by a simple extension of the timescale obtained from the full flow field (Berrouk et al., 2007). In this work, we shall study the subtle and on-monotonic dependence of $\delt T_{Lp}$ on the filter width and particle Stokes number using a flow field obtained from Direct Numerical Simulation (DNS). We then propose an empirical closure model for $\delta T_{Lp}$. Finally, the model is validated against LES of particle-laden turbulence in predicting single-particle statistics such as particle kinetic energy. As a first step, we consider the particle motion under the one-way coupling assumption in isotropic turbulent flow and neglect the gravitational settling effect. The one-way coupling assumption is only valid for low particle mass loading.
Resumo:
The hydrodynamic forces acting on a solid particle in a viscous, incompressible fluid medium at low Reynolds number flow is investigated mathematically as a prerequisite to the understanding of transport processes in two-phase flow involving solid particles and fluid. Viscous interaction between a small number of spherical particles and continuous solid boundaries as well as fluid interface are analyzed under a “point-force” approximation. Non-spherical and elastic spherical particles in a simple shear flow area are then considered. Non-steady motion of a spherical particle is briefly touched upon to illustrate the transient effect of particle motion.
A macroscopic continuum description of particle-fluid flow is formulated in terms of spatial averages yielding a set of particle continuum and bulk fluid equations. Phenomenological formulas describing the transport processes in a fluid medium are extended to cases where the volume concentration of solid particles is sufficiently high to exert an important influence. Hydrodynamic forces acting on a spherical solid particle in such a system, e.g. drag, torque, rotational coupling force, and viscous collision force between streams of different sized particles moving relative to each other are obtained. Phenomenological constants, such as the shear viscosity coefficient, and the diffusion coefficient of the bulk fluid, are found as a function of the material properties of the constituents of the two-phase system and the volume concentration of solid. For transient heat conduction phenomena, it is found that the introduction of a complex conductivity for the bulk fluid permits a simple mathematical description of this otherwise complicated process. The rate of heat transfer between particle continuum and bulk fluid is also investigated by means of an Oseen-type approximation to the energy equation.
Resumo:
The microscale abrasion or ball-cratering test is being increasingly applied to a wide range of bulk materials and coatings. The response of materials to this test depends critically on the nature of the motion of the abrasive particles in the contact zone: whether they roll and produce multiple indentations in the coating, or slide causing grooving abrasion. Similar phenomena also occur when hard contaminant particles enter a lubricated contact. This paper presents simple quantitative two-dimensional models which describe two aspects of the interaction between a hard abrasive particle and two sliding surfaces. The first model treats the conditions under which a spherical abrasive particle of size d can be entrained into the gap between a rotating sphere of radius R and a plane surface. These conditions are determined by the coefficients of friction between the particle and the sphere, and the particle and the plane, denoted by μs and μp respectively. This model predicts that the values of (μs + μp) and 2μs should both exceed √2d/R for the particles to be entrained into the contact. If either is less than this value, the particle will slide against the sphere and never enter the contact. The second model describes the mechanisms of abrasive wear in a contact when an idealized rhombus-sectioned prismatic particle is located between two parallel plane surfaces separated by a certain distance, which can represent either the thickness of a fluid film or the spacing due to the presence of other particles. It is shown that both the ratio of particle size to the separation of the surfaces and the ratio of the hardnesses of the two surfaces have important influences on the particle motion and hence on the mechanism of the resulting abrasive wear. Results from this model are compared with experimental observations, and the model is shown to lead to realistic predictions. © IMechE 2003.