971 resultados para Partial oxidation of methane
Resumo:
In the framework of a project aimed at developing a reliable hydrogen generator for mobile polymer electrolyte fuel cells (PEFCs), particular emphasis has been addressed to the analysis of catalysts able to assure high activity and stability in transient operations (frequent start-up and shut-down cycles). In this paper, the catalytic performance of 1 at.% Pt/ceria samples prepared by coprecipitation, impregnation and combustion, has been evaluated in the partial oxidation of methane. Methane conversion and hydrogen selectivity of 96 and 99%, respectively, associated with high stability during 100h of reaction under operative conditions (start-up and shut-down cycles), have been obtained. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The ceria modified Pt/CeO2/Al2O3 and Pt/Al2O3 catalysts were studied in the partial oxidation of methane to syngas. The SEM, XRD, TPR and TPD techniques were used for the catalyst characterization. The addition of ceria could enhance the Pt dispersion and decrease the Pt crystallise size; the activity and selectivity of catalyst for partial oxidation were improved significantly, and the methane total oxidation was suppressed sharply. The ceria effect was also discussed in a detailed way.
Resumo:
The catalytic partial oxidation of methane to syngas over Ni/Al2O3, Pt/Al2O3 and a series of Pt - Ni/Al2O3 catalysts was investigated. It was found that Pt - Ni/Al2O3 catalysts exhibit higher activity and stability than Ni/Al2O3 and Pt/Al2O3. TPR and TPD methods were used to characterize Pt - Ni bimetallic interactions in the catalysts. A series of Pt - Ni/Al2O3 catalysts and unsupported Pt - Ni samples were studied by XRD and XPS. It was found the formation of Pt - Ni alloy in the Pt - Ni/Al2O3 catalysts and the enrichment of platinum on the surface of the catalysts. It is concluded that the higher activity and stability of Pt - Ni/Al2O3 catalysts were caused by Pt - Ni bimetallic interactions.
Resumo:
The catalytic oxidation of methane to syngas has been carried out over Pt/Al2O3 and Pt/CeO2/Al2O3. It was found that the catalysts with ceria exhibit a higher activity and selectivity than those without ceria. The catalysts were characterized by means of TPR, TPD, SEM-EDX and XRD. There is a strong interaction between ceria and platinum under the reaction condition, which increase the dispersion of platinum over catalysts, preventing the sinter of the Pt particles. As a result of the synergistic;effect between Pt and ceria, the activity of Pt/Al2O3 for combustion reaction was suppressed, the activity and selectivity :For partial oxidation were improved greatly. Another role of ceria in the catalyst is the enhancing of the WGSR, which leads to the increase of the selectivity of catalyst for hydrogen and accelerating the equilibrium of the reaction.
Partial oxidation of methane to synthesize gas over Ni/alpha-Al2O3 catalyst promoted by noble metals
Resumo:
The production of synthesis gas by partial oxidation bf methane in oxygen has been examined over Ni/alpha-Al2O3 catalyst promoted by noble metals(Rh, Ru, Pt and Pd), especially with Pt. The reactivity is considered in conjunction with the result of H-2-TPR, CO-TPD, SEM and XRD. It is found that small amount of Pt results in a great improvement of activity for the Ni/alpha-Al2O3 catalyst. The activity order is : Rh-Ni>Pt-Ni approximate to Ru-Ni>Pd-Ni, meantime the Pt improves the stability of Ni/alpha-Al2O3 catalyst except for Pd which is easy to he deactivated by carbon deposition. The results of TPD, SEM and XRD indicate that there is an interaction between Ni and Pt metals in the catalyst. The interaction increases the dispersions of Pt and Nit the presence of Pt suppresses the growth and the migration of Ni grains over the surface of the catalyst.
Resumo:
The ignition processes for the catalytic partial oxidation of methane (POM) to synthesis gas over oxidic nickel catalyst (NiO/Al2O3), reduced nickel catalyst (Ni-0/Al2O3), and Pt-promoted oxidic nickel catalyst (Pt-NiO/Al2O3) were studied by the temperature-programmed surface reaction (TPSR) technique. The complete oxidation of methane usually took place on the NiO catalyst during the CH4/O-2 reaction, even with a pre-reduced nickel catalyst, and Ni-0 is inevitably first oxidized to NiO if the temperature is below the ignition temperature. It is above a certain temperature that Ni-0 is formed again, which leads to the start of the POM. The POM can be initiated at a much lower temperature on a Pt-NiO catalyst because of Pt promotion of the reduction of NiO. The POM in a fluidized bed can be easily initiated due to the addition of Pt.