957 resultados para Partial Steiner Triple Systems
Resumo:
A well-known, and unresolved, conjecture states that every partial Steiner triple system of order u can be embedded in a Steiner triple system of order v for all v equivalent to 1 or 3 (mod 6), v greater than or equal to 2u + 1. However, some partial Steiner triple systems of order u can be embedded in Steiner triple systems of order v < 2u + 1. A more general conjecture that considers these small embeddings is presented and verified for some cases. (C) 2002 Wiley Periodicals, Inc.
Resumo:
Denote the set of 21 non-isomorphic cubic graphs of order 10 by L. We first determine precisely which L is an element of L occur as the leave of a partial Steiner triple system, thus settling the existence problem for partial Steiner triple systems of order 10 with cubic leaves. Then we settle the embedding problem for partial Steiner triple systems with leaves L is an element of L. This second result is obtained as a corollary of a more general result which gives, for each integer v greater than or equal to 10 and each L is an element of L, necessary and sufficient conditions for the existence of a partial Steiner triple system of order v with leave consisting of the complement of L and v - 10 isolated vertices. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Any partial Steiner triple system of order u can be embedded in a Steiner triple system of order v if v equivalent to 1, 3 (mod 6) and v greater than or equal to 3u - 2. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
A minimal defining set of a Steiner triple system on a points (STS(v)) is a partial Steiner triple system contained in only this STS(v), and such that any of its proper subsets is contained in at least two distinct STS(v)s. We consider the standard doubling and tripling constructions for STS(2v + 1) and STS(3v) from STS(v) and show how minimal defining sets of an STS(v) gives rise to minimal defining sets in the larger systems. We use this to construct some new families of defining sets. For example, for Steiner triple systems on, 3" points; we construct minimal defining sets of volumes varying by as much as 7(n-/-).
Resumo:
We describe a direct method of partitioning the 840 Steiner triple systems of order 9 into 120 large sets. The method produces partitions in which all of the large sets are isomorphic and we apply the method to each of the two non-isomorphic large sets of STS(9).
Resumo:
It is shown that there exists a triangle decomposition of the graph obtained from the complete graph of order v by removing the edges of two vertex disjoint complete subgraphs of orders u and w if and only if u, w, and v are odd, ((v)(2)) - ((u)(2)) - ((w)(2)) equivalent to 0 (mod 3), and v >= w + u + max {u, w}. Such decompositions are equivalent to group divisible designs with block size 3, one group of size u, one group of size w, and v - u - w groups of size 1. This result settles the existence problem for Steiner triple systems having two disjoint specified subsystems, thereby generalizing the well-known theorem of Doyen and Wilson on the existence of Steiner triple systems with a single specified subsystem. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Does there exist a Steiner Triple System on v points, whose blocks can be partitioned into partial parallel classes of size m, where m ≤ [v⁄3], m | b and b is the number of blocks of the STS(v)? We give the answer for 9 ≤ v ≤ 43. We also show that whenever 2|b, v ≡ 3 (mod 6) we can find an STS(v) whose blocks can be partitioned into partial parallel classes of size 2, and whenever 4|b , v ≡ 3 (mod 6), there exists an STS(v) whose blocks can be partitioned into partial parallel classes of size 4.
Resumo:
In this paper we focus on the representation of Steiner trades of volume less than or equal to nine and identify those for which the associated partial latin square can be decomposed into six disjoint latin interchanges.
Resumo:
For a design D, define spec(D) = {\M\ \ M is a minimal defining set of D} to be the spectrum of minimal defining sets of D. In this note we give bounds on the size of an element in spec(D) when D is a Steiner system. We also show that the spectrum of minimal defining sets of the Steiner triple system given by the points and lines of PG(3,2) equals {16,17,18,19,20,21,22}, and point out some open questions concerning the Steiner triple systems associated with PG(n, 2) in general. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The fine structure of a directed triple system of index lambda is the vector (c(1), c(2),...,C-lambda), where c(i) is the number of directed triples appearing precisely i times in the system. We determine necessary and sufficient conditions for a vector to be the fine structure of a directed triple system of index 3 for upsilon = 2 (mod 3).
Resumo:
This thesis is dedicated to the Tits-Kantor-Koecher (TKK) construction which establishes a bijective correspondence between unital Jordan algebras and shortly graded Lie algebras with Z-grading induced by an sl_2-triple. It is based on the observation that if g is a Lie algebra with a short Z-grading and f lies in g_1, then the formula ab=[[a,f],b] defines a structure of a Jordan algebra on g_{-1}. The TKK construction has been extended to Jordan triple systems and, more recently, to the so-called Kantor triple systems. These generalizations are studied in the thesis.
Resumo:
A 4-cycle system of order n, denoted by 4CS(n), exists if and only if nequivalent to1 (mod 8). There are four configurations which can be formed by two 4-cycles in a 4CS(n). Formulas connecting the number of occurrences of each such configuration in a 4CS(n) are given. The number of occurrences of each configuration is determined completely by the number d of occurrences of the configuration D consisting of two 4-cycles sharing a common diagonal. It is shown that for every nequivalent to1 (mod 8) there exists a 4CS(n) which avoids the configuration D, i.e. for which d=0. The exact upper bound for d in a 4CS(n) is also determined.
Resumo:
There are four resolvable Steiner triple systems on fifteen elements. Some generalizations of these systems are presented here.
Resumo:
An algorithm is produced for the symbolic solving of systems of partial differential equations by means of multivariate Laplace–Carson transform. A system of K equations with M as the greatest order of partial derivatives and right-hand parts of a special type is considered. Initial conditions are input. As a result of a Laplace–Carson transform of the system according to initial condition we obtain an algebraic system of equations. A method to obtain compatibility conditions is discussed.
Resumo:
For all odd integers n greater than or equal to 1, let G(n) denote the complete graph of order n, and for all even integers n greater than or equal to 2 let G,, denote the complete graph of order n with the edges of a 1-factor removed. It is shown that for all non-negative integers h and t and all positive integers n, G, can be decomposed into h Hamilton cycles and t triangles if and only if nh + 3t is the number of edges in G(n). (C) 2004 Wiley Periodicals, Inc.