997 resultados para Partial Resistance
Resumo:
Ascochyta blight, caused by Ascochyta lentis , is one of the most globally important diseases of lentil. Breeding for host resistance has been suggested as an efficient means to control this disease. This paper summarizes existing studies of the characteristics and control of Ascochyta blight in lentil, genetics of resistance to Ascochyta blight and genetic variations among pathogen populations (isolates). Breeding methods for control of the disease are discussed. Six pathotypes of A. lentis have been reported. Many resistant cultivars/lines have been identified in both cultivated and wild lentil. Resistance to Ascochyta blight in lentil is mainly under the control of major genes, but minor genes also play a role. Current breeding programmes are based on crossing resistant and high-yielding cultivars and multilocation testing. Gene pyramiding, exploring slow blighting and partial resistance, and using genes present in wild relatives will be the methods used in the future. Identification of more sources of resistance genes, good characterization of the host-pathogen system, and identification of molecular markers tightly linked to resistance genes are suggested as the key areas for future study.
Resumo:
Ergot, caused by Claviceps africana, has emerged as a serious threat to sorghum hybrid seed production worldwide. In the absence of gene-for-gene-based qualitative resistance in commercial cultivars, varieties with high pollen production that can escape ergot infection are preferred. Recent demonstration of differences in ergot susceptibility among male-sterile lines has indicated the presence of partial resistance. Using chitin-specific fluorescin-isothiocyanate-conjugated wheat germ agglutin and callose-specific aniline blue, this study investigated the process of sorghum ovary colonization by C. africana. Conidia germinated within 24 h after inoculation (a.i.); the pathogen was established in the ovary by 79 h a.i., and at least half of the ovary was converted into sphacelial tissue by 120 h a.i. Changes in fungal cell wall chitin content and strategic callose deposition in the host tissue were associated with penetration and invasion of the ovary. The rate of ovary colonization differed in three male-sterile lines that also differed in ergot susceptibility. This work demonstrates a possible histological basis for partial resistance in male-sterile sorghum lines that could lay the foundation for variety improvement through further breeding and selection.
Resumo:
Intravenous silibinin (SIL) is an approved therapeutic that has recently been applied to patients with chronic hepatitis C, successfully clearing hepatitis C virus (HCV) infection in some patients even in monotherapy. Previous studies suggested multiple antiviral mechanisms of SIL; however, the dominant mode of action has not been determined. We first analyzed the impact of SIL on replication of subgenomic replicons from different HCV genotypes in vitro and found a strong inhibition of RNA replication for genotype 1a and genotype 1b. In contrast, RNA replication and infection of genotype 2a were minimally affected by SIL. To identify the viral target of SIL we analyzed resistance to SIL in vitro and in vivo. Selection for drug resistance in cell culture identified a mutation in HCV nonstructural protein (NS) 4B conferring partial resistance to SIL. This was corroborated by sequence analyses of HCV from a liver transplant recipient experiencing viral breakthrough under SIL monotherapy. Again, we identified distinct mutations affecting highly conserved amino acid residues within NS4B, which mediated phenotypic SIL resistance also in vitro. Analyses of chimeric viral genomes suggest that SIL might target an interaction between NS4B and NS3/4A. Ultrastructural studies revealed changes in the morphology of viral membrane alterations upon SIL treatment of a susceptible genotype 1b isolate, but not of a resistant NS4B mutant or genotype 2a, indicating that SIL might interfere with the formation of HCV replication sites. CONCLUSION: Mutations conferring partial resistance to SIL treatment in vivo and in cell culture argue for a mechanism involving NS4B. This novel mode of action renders SIL an attractive candidate for combination therapies with other directly acting antiviral drugs, particularly in difficult-to-treat patient cohorts.
Resumo:
Thirty-nine rice (Oryza sativa) hybrids and their restorers were assessed for vertical resistance to Pyricularia grisea in the rice blast nursery, and in artificial inoculation tests with two pathotypes, under controlled greenhouse conditions. The hybrids were developed from cytoplasmic genetic male sterile lines 046I and IR 58025A, derived from WA cytoplasm. In the rice blast nursery all hybrids showed susceptible reaction varying from 5 to 9. Compatible and incompatible leaf blast reactions of hybrids to two pathotypes, IC-1 and IB-45, were observed in inoculation tests. A majority of the hybrids were resistant when the restorer was resistant. However, seven of the 25 F1 hybrids exhibited susceptible reactions even when one of the parents was resistant to a pathotype. The partial resistance of 11 hybrids and their parents that showed compatible reactions to two pathotypes was analyzed. Differential interaction between isolates and genotypes was observed for partial resistance in relation to both disease severity and lesion number indicating the specific nature of partial resistance.
Resumo:
This paper reviews the evidence relating to the question: does the risk of fungicide resistance increase or decrease with dose? The development of fungicide resistance progresses through three key phases. During the ‘emergence phase’ the resistant strain has to arise through mutation and invasion. During the subsequent ‘selection phase’, the resistant strain is present in the pathogen population and the fraction of the pathogen population carrying the resistance increases due to the selection pressure caused by the fungicide. During the final phase of ‘adjustment’, the dose or choice of fungicide may need to be changed to maintain effective control over a pathogen population where resistance has developed to intermediate levels. Emergence phase: no experimental publications and only one model study report on the emergence phase, and we conclude that work in this area is needed. Selection phase: all the published experimental work, and virtually all model studies, relate to the selection phase. Seven peer reviewed and four non-peer reviewed publications report experimental evidence. All show increased selection for fungicide resistance with increased fungicide dose, except for one peer reviewed publication that does not detect any selection irrespective of dose and one conference proceedings publication which claims evidence for increased selection at a lower dose. In the mathematical models published, no evidence has been found that a lower dose could lead to a higher risk of fungicide resistance selection. We discuss areas of the dose rate debate that need further study. These include further work on pathogen-fungicide combinations where the pathogen develops partial resistance to the fungicide and work on the emergence phase.
Resumo:
Phytophthora root rot, caused by Phytophthora medicaginis, is a major limitation to lucerne ( Medicago sativa L.) production in Australia and North America. Quantitative trait loci (QTLs) involved in resistance to P. medicaginis were identified in a lucerne backcross population of 120 individuals. A genetic linkage map was constructed for tetraploid lucerne using 50 RAPD ( randomly amplified polymorphic DNA), 104 AFLP (amplified fragment length polymorphism) markers, and one SSR ( simple sequence repeat or microsatellite) marker, which originated from the resistant parent (W116); 13 markers remain unlinked. The linkage map contains 18 linkage groups covering 2136.5 cM, with an average distance of 15.0 cM between markers. Four of the linkage groups contained only either 2 or 3 markers. Using duplex markers and repulsion phase linkages the map condensed to 7 homology groups and 2 unassigned linkage groups. Three regions located on linkage groups 2, 14, and 18, were identified as associated with root reaction and the QTLs explained 6 - 15% of the phenotypic variation. The research also indicates that different resistance QTLs are involved in conferring resistance in different organs. Two QTLs were identified as associated with disease resistance expressed after inoculation of detached leaves. The marker, W11-2 on group 18, identified as associated with root reaction, contributed 7% of the phenotypic variation in leaf response in our population. This marker appears to be linked to a QTL encoding a resistance factor contributing to both root and leaf reaction. One other QTL, not identified as associated with root reaction, was positioned on group 1 and contributed to 6% of the variation. This genetic linkage map provides an entry point for future molecular-based improvement of lucerne in Australia, and markers linked to the QTLs we have reported should be useful for marker-assisted selection for partial resistance to P. medicaginis in lucerne.
Resumo:
QTL identified for seedling and adult plant crown rot resistance in four partially resistant hexaploid wheat sources. PCR-based markers identified for use in marker-assisted selection. Crown rot, caused by Fusarium pseudograminearum, is an important disease of wheat in many wheat-growing regions globally. Complete resistance to infection by F. pseudograminearum has not been observed in a wheat host, but germplasm with partial resistance to this pathogen has been identified. The partially resistant wheat hexaploid germplasm sources 2-49, Sunco, IRN497 and CPI133817 were investigated in both seedling and adult plant field trials to identify markers associated with the resistance which could be used in marker-assisted selection programs. Thirteen different quantitative trait loci (QTL) conditioning crown rot resistance were identified in the four different sources. Some QTL were only observed in seedling trials whereas others appeared to be adult plant specific. For example while the QTL on chromosomes 1AS, 1BS, and 4BS contributed by 2-49 and on 2BS contributed by Sunco were detected in both seedling and field trials, the QTL on 1DL present in 2-49 and the QTL on 3BL in IRN497 were only detected in seedling trials. Genetic correlations between field trials of the same population were strong, as were correlations between seedling trials of the same population. Low to moderate correlations were observed between seedling and field trials. Flanking markers, most of which are less than 10 cM apart, have now been identified for each of the regions associated with crown rot resistance.
Resumo:
International audience
Resumo:
Several diseases challenge bread and durum wheat productions worldwide. The importance of these cereals requires adequate protection to pathogens that can cause strong yield and grain quality losses. The main work of this thesis was related to phenotype GDP (Global Durum Panel) in the Mediterranean region (Italy, Egypt, Lebanon, Morocco and Turkey) and Argentina across three years (2019-2021) for yellow rust resistance (infection type and severity). GWAS shows in particular, loci in chromosome 1B, 2B, 4B, 5A, 6A, 7B showed high significance across nurseries/years, with various patterns of GxE. The second chapter is about Zymoseptoria tritici, agent of STB (Septoria Tritici Blotch), a foliar pathogen that yearly causes high damages if not controlled. In recent years research in durum wheat breeding is focused on the identification of novel, underexploited resistance genes to be subsequently and conveniently moved into the pre-breeding and breeding stream. The plants were phenotyped for disease height characters, infection type at the flag leaf and infection type at the level of the canopy below the flag leaf. This experiment opens up a rich scenario of analysis and opportunities to investigate and discover new loci of resistance to STB. Third chapter is about Fusarium head blight (FHB) is a fungal disease caused by pathogens belonging to the genus Fusarium. In particular, Fusarium culmorum and Fusarium graminearum species cause severe grain yield losses and accumulation of mycotoxins in wheat that compromise food safety. Over 250 QTL/genes for FHB resistance have been identified in bread wheat, such as Fhb 1 and Fhb 5 but only a small number of FHB resistance loci have been mapped in durum wheat. The aim of this work is to find loci of partial resistance to FHB already present in durum and bread wheat germplasm and therefore easily cumulative.
Resumo:
This study analyzed the approximate cost of treatment of patients hospitalized with a diagnosis of imported malaria in Slovakia. Between 2003 and 2007, 15 patients with imported malaria were hospitalized. The mean direct cost of the treatment was 970.75 euros and the mean indirect cost was 53.15 euros. For the patient with the highest cost of treatment, the use of mefloquine prophylaxis would have represented only 0.5% of the total direct cost of treating the disease. Despite the partial resistance of plasmodia, malaria chemoprophylaxis is unequivocally a cheaper choice than subsequent treatment of malaria.
Resumo:
Abstract: INTRODUCTION Klebsiella pneumoniae has become an increasingly important etiologic agent of nosocomial infections in recent years. This is mainly due to the expression of virulence factors and development of resistance to several antimicrobial drugs. METHODS This retrospective study examines data obtained from the microbiology laboratory of a Brazilian tertiary-care hospital. To assess temporal trends in prevalence and antimicrobial susceptibility, K. pneumoniae isolates were analyzed from 2000 to 2013. The relative frequencies of K. pneumoniae isolation were calculated among all Gram-negative bacilli isolated in each period analyzed. Susceptibility tests were performed using automated systems. RESULTS: From 2000-2006, K. pneumonia isolates comprised 10.7% of isolated Gram-negative bacilli (455/4260). From 2007-2013, this percentage was 18.1% (965/5331). Strictly considering isolates from bloodstream infections, the relative annual prevalence of K. pneumoniae increased from 14-17% to 27-32% during the same periods. A progressive decrease in K. pneumoniae susceptibility to all antimicrobial agents assessed was detected. Partial resistance was also observed to antimicrobial drugs that have been used more recently, such as colistin and tigecycline. CONCLUSIONS Our study indicates that K. pneumoniae has become a major pathogen among hospitalized patients and confirms its recent trend of increasing antimicrobial resistance.
Resumo:
Experimental systems to assay immunity against Trypanosoma cruzi usually demonstrate partial resistance without excluding the establishment of sub-patent infections in protected animals. To test whether Swiss mice immunized with attenuated parasites might develop complete resistance against virulent T. cruzi, experiments were performed involving challenge with low numbers of parasites, enhancement of local inflammation and the combination of natural and acquired resistance. Absence of infection was established after repeated negative parasitological tests (including xenodiagnosis and hemoculture), and lack of lytic antibody was tested by complement mediated lysis. Immunization with 10(7) attenuated epimastigotes conferred protection against the development of high levels of parasitemia after challenge with Tulahuen strain, but was unable to reduce the number of infected animals. However, when a strong, delayed-type hypersensitivity reaction was triggered at the site of infection by injecting a mixture of virulent and attenuated T. cruzi, a significant proportion of immunized animals remained totally free of virulent infection. The same result was obtained when the immunization experiment was performed in four month old Swiss mice, displaying a relatively high natural resistance and challenged with wild, vector-borne parasites. These experiments demonstrate that complete resistance against T. cruzi can be obtained in a significant proportion of animals, under conditions which replicate natural, vector delivered infection by the parasite.
Resumo:
This work aimed to study the interaction between the model plant Arabidopsis thaliana and Xanthomonas campestris pv. campestris (Xcc), the pathogen responsible for black rot of crucifers. The response of 32 accessions of A. thaliana to the Brazilian isolate of Xcc CNPH 17 was evaluated. No immunity-like response was observed. "CS1308", "CS1566" and "CS1643" grown in continuous light were among the accessions that showed strongest resistance when inoculated with 5 x 10(6) CFU/mL. In contrast, "CS1194" and "CS1492" were among the most susceptible accessions. Similar results were obtained when plants were grown under short-day conditions. To quantify the differences in disease symptoms, total chlorophyll was extracted from contrasting accessions at different time points after inoculation. Chlorophyll levels from controls and Xcc inoculated plants showed a similar reduction in resistant accessions, whereas Xcc-inoculated susceptible accessions showed a greater reduction compared to controls. To test the specificity of resistance, accessions CS1308, CS1566, CS1643 and CS1438 (which showed partial resistance to CNPH 17), were inoculated with a more aggressive isolate of Xcc (CNPH 77) and Ralstonia solanacearum. Among the accessions tested, "CS1566" was the most resistant to Xcc CNPH 77 and also displayed resistance to R. solanacearum. Accessions CS1308, CS1566 and CS1643 were also inoculated with a high titer of Xcc CNPH 17 (5 x 10(8) CFU/mL). No collapse of tissue was observed up to 48 h after inoculation, indicating that a hypersensitive response is not involved in the resistance displayed by these accessions.
Resumo:
We demonstrated that administration of interferon gamma (IFN-g) to the inbred "l" strain of pregnant rats conferred partial resistance on their offspring to challenge with Trypanosoma cruzi. We now examine if this intervention also modifies the reportedly immunodepressed cellular responses which occur during chronic infection. Offspring were born to mothers undergoing one of the following procedures during gestation: subcutaneous injections of recombinant rat IFN-g, 50,000 IU/rat, five times/week for 3 weeks, which was started on the day of mating (IFN-Mo); infection with 106 trypomastigotes of T. cruzi at 7, 14, and 21 days after mating plus IFN-g treatment as given to the former group (TcIFN-Mo); the same protocol except that physiological saline was injected instead of IFN-g (Tc-Mo); injection of physiological saline only (control-Mo). All offspring groups (N = 8-10/group) were infected at weaning and were assessed 90 days later for their adjuvant-induced arthritic response or levels of major T cell subsets in spleen and lymph nodes. TcIFN-Mo and IFN-Mo offspring showed a reestablished arthritic response, which remained within the range seen in controls. Immunolabeling studies on parallel groups of 90-day-infected offspring showed that the inverse CD4/CD8 cell ratio that is usually seen in lymphoid organs from these chronically infected rats (median 0.61) appeared to have recovered in the TcIFN-Mo and IFN-Mo groups (median 1.66 and 1.78, respectively) and was not different from uninfected controls (1.96). These studies indicate that early stimulation with IFN-g is able to reverse the immunosuppressive state that is usually present during the chronic period of the experimental infection.