991 resultados para Partículas compósitas Al2O3-Cu


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Cu-Al2O3 composite ceramic combines the phase of alumina, which is extremely hard and durable, yet very brittle, to metallic copper phase high ductility and high fracture toughness. These characteristics make this material a strong candidate for use as a cutting tool. Al2O3-Cu composite powders nanocrystalline and high homogeneity can be produced by high energy milling, as well as dense and better mechanical structures can be obtained by liquid phase sintering. This work investigates the effect of high-energy milling the dispersion phase Al2O3, Cu, and the influence of the content of Cu in the formation of Cu-Al2O3 composite particles. A planetary mill Pulverisatte 7 high energy was used to perform the experiments grinding. Al2O3 powder and Cu in the proportion of 5, 10 and 15% by weight of Cu were placed in a container for grinding with balls of hard metal and ethyl alcohol. A mass ratio of balls to powder of 1:5 was used. All powders were milled to 100 hours, and powder samples were collected after 2, 10, 20, 50 and 70 hours of grinding. Composite powders with compact cylindrical shape of 8 mm diameter were pressed and sintered in uniaxial matrix resistive furnace to 1200, 1300 to 1350 °C for 60 minutes under an atmosphere of argon and hydrogen. The heating rate used was 10°C/min. The powders and structures of the sintered bodies were characterized by XRD, SEM and EDS. Analysis TG, DSC and particle size were also used to characterize the milled powders, as well as dilatometry was used to observe the contraction of the sintered bodies. The density of the green and sintered bodies was measured using the geometric method (mass / volume). Vickers microhardness with a load of 500 g for 10 s were performed on sintered structures. The Cu-Al2O3 composite with 5% copper density reached 61% of theoretical density and a hardness of 129 HV when sintered at 1300 ° C for 1h. In contrast, lower densities (59 and 51% of the theoretical density) and hardness (110 HV and 105) were achieved when the copper content increases to 10 and 15%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ta-Cu bulk composites combine high mechanical resistance of the Ta with high electrical and thermal conductivity of the Cu. These are important characteristics to electrical contacts, microwave absorber and heat skinks. However, the low wettability of Ta under Cu liquid and insolubility mutual these elements come hard sintering this composite. High-energy milling (HEM) produces composite powders with high homogeneity and refines the grain size. This work focus to study Ta-20wt%Cu composite powders prepared by mechanical mixture and HEM with two different conditions of milling in a planetary ball mill and then their sintering using hydrogen plasma furnace and a resistive vacuum furnace. After milling, the powders were pressed in a steel dye at a pressure of 200 MPa. The cylindrical samples pressed were sintered by resistive vacuum furnace at 10-4torr with a sintering temperature at 1100ºC / 60 minutes and with heat rate at 10ºC/min and were sintered by plasma furnace with sintering temperatures at 550, 660 and 800ºC without isotherm under hydrogen atmosphere with heat rate at 80ºC/min. The characterizations of the powders produced were analyzed by scanning electron microscopy (SEM), x-ray diffraction (XRD) and laser granulometry. After the sintering the samples were analyzed by SEM, XRD and density and mass loss tests. The results had shown that to high intense milling condition produced composite particles with shorter milling time and amorphization of both phases after 50 hours of milling. The composite particles can produce denser structure than mixed powders, if heated above the Cu melting point. After the Cu to arrive in the melting point, liquid copper leaves the composite particles and fills the pores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, was studied the formation of a composite of the refractory metal niobium with copper, through the process of high-energy milling and liquid phase sintering. The HEM can be used to synthesize composite powders with high homogeneity and fine size particle distribution. It may also produce the solid solubility in immiscible systems such as Nb-Cu, or extend the solubility of systems with limited solubility. Therefore, in the immiscible system Cu-Nb, the high-energy milling was successfully used to obtain the composite powder particles. Initially, the formation of composite particles during the HEM and the effect of preparation technique on the microstructure of the material was evaluated. Four loads of Nb and Cu powders containing 20%wt Cu were synthesized by MAE in a planetary type ball mill under different periods of grinding. The influence of grinding time on the metal particles is evaluated during the process by the withdrawal of samples at intermediate times of milling. After compaction under different forces, the samples were sintered in a vacuum furnace. The liquid phase sintering of these samples prepared by HEM produced a homogeneous and fine grained. The composite particles forming the sintered samples are the addition of a hard phase (Nb) with a high melting point, and a ductile phase (Cu) with low melting point and high thermal and electrical conductivities. Based on these properties, the Nb-Cu system is a potential material for many applications, such as electrical contacts, welding electrodes, coils for generating high magnetic fields, heat sinks and microwave absorbers, which are coupled to electronic devices. The characterization techniques used in this study, were laser granulometry, used to evaluate the homogeneity and particle size, and the X-ray diffraction, in the phase identification and to analyze the crystalline structure of the powders during milling. The morphology and dispersion of the phases in the composite powder particles, as well the microstructures of the sintered samples, were observed by scanning electron microscopy (SEM). Subsequently, the sintered samples are evaluated for density and densification. And finally, they were characterized by techniques of measuring the electrical conductivity and microhardness, whose properties are analyzed as a function of the parameters for obtaining the composite

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ta-Cu bulk composites combine high mechanical resistance of the Ta with high electrical and thermal conductivity of the Cu. These are important characteristics to electrical contacts, microwave absorber and heat skinks. However, the low wettability of Ta under Cu liquid and insolubility mutual these elements come hard sintering this composite. High-energy milling (HEM) produces composite powders with high homogeneity and refines the grain size. This work focus to study Ta-20wt%Cu composite powders prepared by mechanical mixture and HEM with two different conditions of milling in a planetary ball mill and then their sintering using hydrogen plasma furnace and a resistive vacuum furnace. After milling, the powders were pressed in a steel dye at a pressure of 200 MPa. The cylindrical samples pressed were sintered by resistive vacuum furnace at 10-4torr with a sintering temperature at 1100ºC / 60 minutes and with heat rate at 10ºC/min and were sintered by plasma furnace with sintering temperatures at 550, 660 and 800ºC without isotherm under hydrogen atmosphere with heat rate at 80ºC/min. The characterizations of the powders produced were analyzed by scanning electron microscopy (SEM), x-ray diffraction (XRD) and laser granulometry. After the sintering the samples were analyzed by SEM, XRD and density and mass loss tests. The results had shown that to high intense milling condition produced composite particles with shorter milling time and amorphization of both phases after 50 hours of milling. The composite particles can produce denser structure than mixed powders, if heated above the Cu melting point. After the Cu to arrive in the melting point, liquid copper leaves the composite particles and fills the pores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, was studied the formation of a composite of the refractory metal niobium with copper, through the process of high-energy milling and liquid phase sintering. The HEM can be used to synthesize composite powders with high homogeneity and fine size particle distribution. It may also produce the solid solubility in immiscible systems such as Nb-Cu, or extend the solubility of systems with limited solubility. Therefore, in the immiscible system Cu-Nb, the high-energy milling was successfully used to obtain the composite powder particles. Initially, the formation of composite particles during the HEM and the effect of preparation technique on the microstructure of the material was evaluated. Four loads of Nb and Cu powders containing 20%wt Cu were synthesized by MAE in a planetary type ball mill under different periods of grinding. The influence of grinding time on the metal particles is evaluated during the process by the withdrawal of samples at intermediate times of milling. After compaction under different forces, the samples were sintered in a vacuum furnace. The liquid phase sintering of these samples prepared by HEM produced a homogeneous and fine grained. The composite particles forming the sintered samples are the addition of a hard phase (Nb) with a high melting point, and a ductile phase (Cu) with low melting point and high thermal and electrical conductivities. Based on these properties, the Nb-Cu system is a potential material for many applications, such as electrical contacts, welding electrodes, coils for generating high magnetic fields, heat sinks and microwave absorbers, which are coupled to electronic devices. The characterization techniques used in this study, were laser granulometry, used to evaluate the homogeneity and particle size, and the X-ray diffraction, in the phase identification and to analyze the crystalline structure of the powders during milling. The morphology and dispersion of the phases in the composite powder particles, as well the microstructures of the sintered samples, were observed by scanning electron microscopy (SEM). Subsequently, the sintered samples are evaluated for density and densification. And finally, they were characterized by techniques of measuring the electrical conductivity and microhardness, whose properties are analyzed as a function of the parameters for obtaining the composite

Relevância:

100.00% 100.00%

Publicador:

Resumo:

新型材料大都离不开薄膜。薄膜材料广泛应用在表面工程、界面工程、生物材料以及微纳米机电系统(MEMS)等领域。研究和评估薄膜/基体界面的力学性能-特别是在微尺度下,具有重要的科学研究价值和应用价值。划痕和撕裂是微/纳米尺度薄膜力学性能测量的两种主要方法,而撕裂实验相对简单可行,理论分析模型也相对方便建立。本文系统研究了Al/epoxy/Al2O3体系和Cu/Al2O3体系的撕裂实验,开发出一套微尺度薄膜撕裂的实验设备和方法,得出薄膜厚度、撕裂角度、epoxy层厚度等因素对撕裂力的影响。应用微梁弯曲模型和粘聚力(EPZ)模型,本文从总撕裂力中分离薄膜塑性变形耗散能量,得出了所考察薄膜/基体界面的粘结韧性等力学性能。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

在滇西羊拉铜矿区发现了4层硅质岩, 该硅质岩具有低的TiO2, Al2O3与高的成矿元素(Cu, Au, Ag)含量特征. 硅质岩稀土元素总量很低, 其球粒陨石标准化配分模式为向右倾的曲线, 具有明显的负Eu异常与弱的正Ce异常, 与矿区早期形成的块状硫化物矿石、 矿石矿物及脉石矿物具有一致的稀土元素球粒陨石标准化配分模式, 而与成矿中晚期形成的夕卡岩型矿石及破碎带充填交代型矿石明显不同. 硅质岩的硅同位素组成与热水沉积的硅华及硅质岩一致, 它的铅同位素组成与块状硫化物矿石一致, 它的Rb-Sr等时线年龄为272 Ma ± 6 Ma, 与赋矿地层时代一致. 研究表明羊拉矿区硅质岩为典型的热水沉积硅质岩, 且与矿区块状硫化物矿体关系密切, 这为该矿床块状硫化物矿体为海底喷流热水沉积作用形成提供了直接的证据.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de doutoramento, Farmácia (Tecnologia Farmacêutica), Universidade de Lisboa, Faculdade de Farmácia, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work a studied the high energy milling effect in microstructure and magnetic properties of the WC-10wt.%Co composite. The composite powders were prepared by mechanical mixed and milled at 2 hours, 100 hours, 200 hours and 300 hours in planetary milling. After this process the composite were compacted in stainless steel die with cylindrical county of 10 mm of diameter, at pressure 200 Mpa and sintered in a resistive furnace in argon atmosphere at 1400 oC for 5 min. The sintered composite were cutted, inlaid, sandpapered, and polished. The microestrutural parameters of the composite was analyzed by X-ray diffraction, scanning electronic microscopy, optical microscopy, hardness, magnetic propriety and Rietveld method analyze. The results shows, with milling time increase the particle size decrease, it possibility minor temperature of sintering. The increase of milling time caused allotropic transformation in cobalt phase and cold welding between particles. The cold welding caused the formation of the particle composite. The X-ray diffraction pattern of composite powders shows the WC peaks intensity decrease with the milling time increase. The X-ray diffraction pattern of the composite sintered samples shows the other phases. The magnetic measurements detected a significant increase in the coercitive field and a decrease in the saturation magnetization with milling time increase. The increase coercitive field it was also verified with decrease grain size with milling time increase. For the composite powders the increase coercitive field it was verified with particle size reduction and saturation magnetization variation is relate with the variation of free cobalt. The Rietveld method analyze shows at milling time increase the mean crystalline size of WC, and Co-cfc phases in composite sintered sample are higher than in composite powders. The mean crystallite size of Co-hc phase in composite powders is higher than in composite sintered sample. The mean lattice strains of WC, Co-hc and Co-cfc phases in composite powders are higher than in composite sintered samples. The cells parameters of the composite powder decrease at milling time increase this effect came from the particle size reduction at milling time increase. In sintered composite the cells parameters is constant with milling time increase

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Reabilitação Oral - FOAR

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obiettivo del mio lavoro di tesi è stato quello di verificare la fattibilità di un nuovo processo per la produzione di acido adipico da cicloesene con due stadi di reazione. Il primo stadio di reazione prevede l’ossidazione del cicloesene con soluzione acquosa di acqua ossigenata a formare l’epossido, che idrata a 1,2-cicloesandiolo, mentre nel secondo stadio il glicole viene ossidato con ossigeno ad acido adipico. Il lavoro è stato focalizzato sullo studio del meccanismo di reazione per l’ossidazione del 1,2-cicloesandiolo ad acido adipico, utilizzando catalizzatori a base di Ru(OH)3/Al2O3, Ru(OH)3-Bi(OH)3/Al2O3, Cu/C e Cu/TiO2. Le prove condotte hanno dimostrato che i catalizzatori usati sono attivi nell’ossidazione di 1,2-cicloesandiolo, ma sono caratterizzati da scarsa selettività ad acido adipico. Dall’analisi dei risultati ottenuti si desume che la reazione richiede condizioni fortemente basiche per potere avvenire. In queste condizioni però si vengono a formare degli intermedi che reagiscono rapidamente con l’acqua e con l’ossigeno, dando luogo alla formazione di una serie di prodotti primari e secondari.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work a studied the high energy milling effect in microstructure and magnetic properties of the WC-10wt.%Co composite. The composite powders were prepared by mechanical mixed and milled at 2 hours, 100 hours, 200 hours and 300 hours in planetary milling. After this process the composite were compacted in stainless steel die with cylindrical county of 10 mm of diameter, at pressure 200 Mpa and sintered in a resistive furnace in argon atmosphere at 1400 oC for 5 min. The sintered composite were cutted, inlaid, sandpapered, and polished. The microestrutural parameters of the composite was analyzed by X-ray diffraction, scanning electronic microscopy, optical microscopy, hardness, magnetic propriety and Rietveld method analyze. The results shows, with milling time increase the particle size decrease, it possibility minor temperature of sintering. The increase of milling time caused allotropic transformation in cobalt phase and cold welding between particles. The cold welding caused the formation of the particle composite. The X-ray diffraction pattern of composite powders shows the WC peaks intensity decrease with the milling time increase. The X-ray diffraction pattern of the composite sintered samples shows the other phases. The magnetic measurements detected a significant increase in the coercitive field and a decrease in the saturation magnetization with milling time increase. The increase coercitive field it was also verified with decrease grain size with milling time increase. For the composite powders the increase coercitive field it was verified with particle size reduction and saturation magnetization variation is relate with the variation of free cobalt. The Rietveld method analyze shows at milling time increase the mean crystalline size of WC, and Co-cfc phases in composite sintered sample are higher than in composite powders. The mean crystallite size of Co-hc phase in composite powders is higher than in composite sintered sample. The mean lattice strains of WC, Co-hc and Co-cfc phases in composite powders are higher than in composite sintered samples. The cells parameters of the composite powder decrease at milling time increase this effect came from the particle size reduction at milling time increase. In sintered composite the cells parameters is constant with milling time increase