82 resultados para Parser
Resumo:
Pappret conceptualizes parsning med Constraint Grammar på ett nytt sätt som en process med två viktiga representationer. En representation innehåller lokala tvetydighet och den andra sammanfattar egenskaperna hos den lokala tvetydighet klasser. Båda representationer manipuleras med ren finite-state metoder, men deras samtrafik är en ad hoc -tillämpning av rationella potensserier. Den nya tolkningen av parsning systemet har flera praktiska fördelar, bland annat det inåt deterministiska sättet att beräkna, representera och räkna om alla potentiella tillämpningar av reglerna i meningen.
Resumo:
By utilizing structure sharing among its parse trees, a GB parser can increase its efficiency dramatically. Using a GB parser which has as its phrase structure recovery component an implementation of Tomita's algorithm (as described in [Tom86]), we investigate how a GB parser can preserve the structure sharing output by Tomita's algorithm. In this report, we discuss the implications of using Tomita's algorithm in GB parsing, and we give some details of the structuresharing parser currently under construction. We also discuss a method of parallelizing a GB parser, and relate it to the existing literature on parallel GB parsing. Our approach to preserving sharing within a shared-packed forest is applicable not only to GB parsing, but anytime we want to preserve structure sharing in a parse forest in the presence of features.
Resumo:
We describe a GB parser implemented along the lines of those written by Fong [4] and Dorr [2]. The phrase structure recovery component is an implementation of Tomita's generalized LR parsing algorithm (described in [10]), with recursive control flow (similar to Fong's implementation). The major principles implemented are government, binding, bounding, trace theory, case theory, θ-theory, and barriers. The particular version of GB theory we use is that described by Haegeman [5]. The parser is minimal in the sense that it implements the major principles needed in a GB parser, and has fairly good coverage of linguistically interesting portions of the English language.
Resumo:
Free-word order languages have long posed significant problems for standard parsing algorithms. This thesis presents an implemented parser, based on Government-Binding (GB) theory, for a particular free-word order language, Warlpiri, an aboriginal language of central Australia. The words in a sentence of a free-word order language may swap about relatively freely with little effect on meaning: the permutations of a sentence mean essentially the same thing. It is assumed that this similarity in meaning is directly reflected in the syntax. The parser presented here properly processes free word order because it assigns the same syntactic structure to the permutations of a single sentence. The parser also handles fixed word order, as well as other phenomena. On the view presented here, there is no such thing as a "configurational" or "non-configurational" language. Rather, there is a spectrum of languages that are more or less ordered. The operation of this parsing system is quite different in character from that of more traditional rule-based parsing systems, e.g., context-free parsers. In this system, parsing is carried out via the construction of two different structures, one encoding precedence information and one encoding hierarchical information. This bipartite representation is the key to handling both free- and fixed-order phenomena. This thesis first presents an overview of the portion of Warlpiri that can be parsed. Following this is a description of the linguistic theory on which the parser is based. The chapter after that describes the representations and algorithms of the parser. In conclusion, the parser is compared to related work. The appendix contains a substantial list of test cases ??th grammatical and ungrammatical ??at the parser has actually processed.
Resumo:
Syntactic theory provides a rich array of representational assumptions about linguistic knowledge and processes. Such detailed and independently motivated constraints on grammatical knowledge ought to play a role in sentence comprehension. However most grammar-based explanations of processing difficulty in the literature have attempted to use grammatical representations and processes per se to explain processing difficulty. They did not take into account that the description of higher cognition in mind and brain encompasses two levels: on the one hand, at the macrolevel, symbolic computation is performed, and on the other hand, at the microlevel, computation is achieved through processes within a dynamical system. One critical question is therefore how linguistic theory and dynamical systems can be unified to provide an explanation for processing effects. Here, we present such a unification for a particular account to syntactic theory: namely a parser for Stabler's Minimalist Grammars, in the framework of Smolensky's Integrated Connectionist/Symbolic architectures. In simulations we demonstrate that the connectionist minimalist parser produces predictions which mirror global empirical findings from psycholinguistic research.
Resumo:
Mr. Kubon's project was inspired by the growing need for an automatic, syntactic analyser (parser) of Czech, which could be used in the syntactic processing of large amounts of texts. Mr. Kubon notes that such a tool would be very useful, especially in the field of corpus linguistics, where creating a large-scale "tree bank" (a collection of syntactic representations of natural language sentences) is a very important step towards the investigation of the properties of a given language. The work involved in syntactically parsing a whole corpus in order to get a representative set of syntactic structures would be almost inconceivable without the help of some kind of robust (semi)automatic parser. The need for the automatic natural language parser to be robust increases with the size of the linguistic data in the corpus or in any other kind of text which is going to be parsed. Practical experience shows that apart from syntactically correct sentences, there are many sentences which contain a "real" grammatical error. These sentences may be corrected in small-scale texts, but not generally in the whole corpus. In order to be able to complete the overall project, it was necessary to address a number of smaller problems. These were; 1. the adaptation of a suitable formalism able to describe the formal grammar of the system; 2. the definition of the structure of the system's dictionary containing all relevant lexico-syntactic information, and the development of a formal grammar able to robustly parse Czech sentences from the test suite; 3. filling the syntactic dictionary with sample data allowing the system to be tested and debugged during its development (about 1000 words); 4. the development of a set of sample sentences containing a reasonable amount of grammatical and ungrammatical phenomena covering some of the most typical syntactic constructions being used in Czech. Number 3, building a formal grammar, was the main task of the project. The grammar is of course far from complete (Mr. Kubon notes that it is debatable whether any formal grammar describing a natural language may ever be complete), but it covers the most frequent syntactic phenomena, allowing for the representation of a syntactic structure of simple clauses and also the structure of certain types of complex sentences. The stress was not so much on building a wide coverage grammar, but on the description and demonstration of a method. This method uses a similar approach as that of grammar-based grammar checking. The problem of reconstructing the "correct" form of the syntactic representation of a sentence is closely related to the problem of localisation and identification of syntactic errors. Without a precise knowledge of the nature and location of syntactic errors it is not possible to build a reliable estimation of a "correct" syntactic tree. The incremental way of building the grammar used in this project is also an important methodological issue. Experience from previous projects showed that building a grammar by creating a huge block of metarules is more complicated than the incremental method, which begins with the metarules covering most common syntactic phenomena first, and adds less important ones later, especially from the point of view of testing and debugging the grammar. The sample of the syntactic dictionary containing lexico-syntactical information (task 4) now has slightly more than 1000 lexical items representing all classes of words. During the creation of the dictionary it turned out that the task of assigning complete and correct lexico-syntactic information to verbs is a very complicated and time-consuming process which would itself be worth a separate project. The final task undertaken in this project was the development of a method allowing effective testing and debugging of the grammar during the process of its development. The problem of the consistency of new and modified rules of the formal grammar with the rules already existing is one of the crucial problems of every project aiming at the development of a large-scale formal grammar of a natural language. This method allows for the detection of any discrepancy or inconsistency of the grammar with respect to a test-bed of sentences containing all syntactic phenomena covered by the grammar. This is not only the first robust parser of Czech, but also one of the first robust parsers of a Slavic language. Since Slavic languages display a wide range of common features, it is reasonable to claim that this system may serve as a pattern for similar systems in other languages. To transfer the system into any other language it is only necessary to revise the grammar and to change the data contained in the dictionary (but not necessarily the structure of primary lexico-syntactic information). The formalism and methods used in this project can be used in other Slavic languages without substantial changes.
Resumo:
Review of this book, that is the author's Thesis Dissertation.
Resumo:
Thesis (M. S.)--University of Illinois at Urbana-Champaign.
Resumo:
Thesis (M.S.)--University of Illinois at Urbana-Champaign.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
We propose a hybrid generative/discriminative framework for semantic parsing which combines the hidden vector state (HVS) model and the hidden Markov support vector machines (HM-SVMs). The HVS model is an extension of the basic discrete Markov model in which context is encoded as a stack-oriented state vector. The HM-SVMs combine the advantages of the hidden Markov models and the support vector machines. By employing a modified K-means clustering method, a small set of most representative sentences can be automatically selected from an un-annotated corpus. These sentences together with their abstract annotations are used to train an HVS model which could be subsequently applied on the whole corpus to generate semantic parsing results. The most confident semantic parsing results are selected to generate a fully-annotated corpus which is used to train the HM-SVMs. The proposed framework has been tested on the DARPA Communicator Data. Experimental results show that an improvement over the baseline HVS parser has been observed using the hybrid framework. When compared with the HM-SVMs trained from the fully-annotated corpus, the hybrid framework gave a comparable performance with only a small set of lightly annotated sentences. © 2008. Licensed under the Creative Commons.
Resumo:
Computational biology increasingly demands the sharing of sophisticated data and annotations between research groups. Web 2.0 style sharing and publication requires that biological systems be described in well-defined, yet flexible and extensible formats which enhance exchange and re-use. In contrast to many of the standards for exchange in the genomic sciences, descriptions of biological sequences show a great diversity in format and function, impeding the definition and exchange of sequence patterns. In this presentation, we introduce BioPatML, an XML-based pattern description language that supports a wide range of patterns and allows the construction of complex, hierarchically structured patterns and pattern libraries. BioPatML unifies the diversity of current pattern description languages and fills a gap in the set of XML-based description languages for biological systems. We discuss the structure and elements of the language, and demonstrate its advantages on a series of applications, showing lightweight integration between the BioPatML parser and search engine, and the SilverGene genome browser. We conclude by describing our site to enable large scale pattern sharing, and our efforts to seed this repository.