917 resultados para Park Ridge
Resumo:
On cover: Illinois traffic safety programs, report of evaluation or assessment. Concentrated traffic enforcement program, Park Ridge, Illinois, final report.
Resumo:
Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Blanchard's map of Chicago and suburbs. It was published by Rufus Blanchard in 1910. Scale [ca. 1:49,600]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Illinois East State Plane Coordinate System NAD83 (in Feet) (Fipszone 1201). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, elevated roads, railroads, railroad stations, street car lines, drainage, selected industry locations, parks and boulevards, city limits and ward boundaries, and more. Includes insets: Lake shore north of Chicago -- Cook, Dupage, and Will counties, also parts of Kane County, Ill., and Lake County, Ind.. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Rand McNally & Co.'s new street number guide map of Chicago, Rand McNally & Co. It was published by Rand McNally & Co. ca. 1916. Scale [ca. 1:37,500]. This layer is image 1 of 2 total images of the double-sided source map, representing the northern portion of the map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Illinois East State Plane Coordinate System NAD83 (in Feet) (Fipszone 1201). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, railroad stations, team tracks, street car lines, elevated roads, drainage, parks, boulevards, city boundaries, and more. Includes index to railroads and explanation. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic, topographic paper map entitled: Chicago and vicinity, Ill.-Ind. : sheet no. 1 of 3 (Evanston), 1953, mapped, edited, and published by the Geological Survey. It was published in 1957. Scale 1:24,000. The source map was compiled from 1:24,000 scale maps of Evanston, Park Ridge, Arlington Heights, Elmhurst, River Forest, and Chicago Loop, 1953 7.5 minute quadrangles. Hydrography from U.S. Lake Survey Charts 75 (1:120,000), 751 (1:60,000), and 752 (1:15,000). This layer is image 1 of 3 total images of the three sheet source map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Illinois East State Plane Coordinate System NAD27 (in Feet) (Fipszone 1201). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This is a typical topographic map portraying both natural and manmade features. It shows and names works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. It also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 5 feet. Depths shown by isolines and soundings. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: The Union News Company's new and correct map of Chicago : showing the new city limits and location of the World's Columbian Exposition, streets, parks, boulevards, railroads, street car lines, etc. It was published by Rand McNally & Co. in 1893. Scale [ca. 1:57,900]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Illinois East State Plane Coordinate System NAD83 (in Feet) (Fipszone 1201). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, railroad stations, drainage, the location of the World's Columbian Exposition, 1893, and more. Includes list of railroads entering Chicago. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
"October 28, 2000."
Resumo:
Over the last one hundred years, compartmentalization and water management activities have reduced water flow to the ridge and slough landscape of the Everglades. As a result, the once corrugated landscape has become topographically and vegetationally uniform. The focus of this study was to quantify variation in surface flow in the ridge and slough landscape and to relate flow conditions to particulate transport and deposition. Over the 2002–2003 and 2003–2004 wet seasons, surface velocities and particulate accumulation were measured in upper Shark River Slough in Everglades National Park. Landscape characteristics such as elevation, plant density and biomass also were examined to determine their impact on flow characteristics and material transport. The results of this study demonstrate that the release of water during the wet season not only increases water levels, but also increased flow speeds and particulate transport and availability. Further, flow speeds were positively and significantly correlated with water level thereby enhancing particulate transport in sloughs relative to ridges especially during peak flow periods. Our results also indicate that the distribution of biomass in the water column, including floating plants and periphyton, affects velocity magnitude and shape of vertical profiles, especially in the sloughs where Utricularia spp. and periphyton mats are more abundant. Plot clearing experiments suggest that the presence of surface periphyton and Utricularia exert greater control over flow characteristics than the identity (i.e., sawgrass or spike rush) or density of emergent macrophytes, two parameters frequently incorporated into models describing flow through vegetated canopies. Based on these results, we suggest that future modeling efforts must take the presence of floating biomass, such as Utricularia, and presence of periphyton into consideration when describing particulate transport.
Resumo:
Brisbane, the capital of Queensland, in South-East Queensland is situated on the Brisbane River, one of the largest rivers (and floodplains) on the east coast of Australia. The river defines the city and gives it its name. The river has been a natural place to accommodate some population growth for the city with high-density development that capitalises on the natural amenity, cycleways and a string of parks and the flatter land. The major floods of 2011 and the scare of 2013, has seen a more malevolent quality of the river and shift of thinking on its role within the city. The floods have made council, for the first time, acquire prime development sites near the river, with proposals for high density development and made them parks, at great cost. The pressure for population growth in Brisbane remains. 140,000 new dwellings are required by 2031. Brownfield sites are less plentiful and there is interest to rethink of some of the other strategic locations in the city away from the river on higher ground and steeper slopes. Some of these places are currently open spaces. Victoria Park Golf Course sits on a high ridge line and a very strategic part of the city just north of the city centre is one of the few remaining golf courses close to the centre of an Australian capital city. While it is a public course and a valuable community asset, it has been compromised by the recently completed northern busway with two bus stations constructed on its edges. It is bounded on the west and north-east by two major community facilities, the Queensland University of Technology (QUT) to the west and RBW Hospital at its northern end. In a city in need of urban consolidation, perhaps it is time to review the future of the golf course. This question has been investigated as a conjecture in the Master of Architecture program at the QUT. The project has been to re-imagine Victoria Park as a new city parkland and a place that makes an urban connection from the QUT to the hospital. This new urban precinct is be a medium to high-density transit oriented development that capitalises on the bus way stations and the proximity of the university and hospital. The precinct will frame/define/interact with the new major urban park for the city. A key question being addressed is how the design can embody and define principles of a subtropical urbanism. Students are identifying the appropriate street and block structure, density and built form to be accommodated on blocks that define and activate a rich sequence of streets and public spaces. The paper will present a critical overview of the project work that provides a lens to how future professionals may respond to these issue that will be the focus of their professional lives.
Resumo:
PURPOSE: The aim of this review was to evaluate the techniques and outcomes of postextraction ridge preservation and the efficacy of these procedures in relation to subsequent implant placement. MATERIALS AND METHODS: A MEDLINE/PubMed search was conducted and the bibliographies of reviews from 1999 to March 2008 were assessed for appropriate studies. Randomized clinical trials, controlled clinical trials, and prospective/retrospective studies with a minimum of five patients were included. RESULTS: A total of 135 abstracts were identified, from which 53 full-text articles were further examined, leading to 37 human studies that fulfilled the search criteria. Many different techniques, methodologies, durations, and materials were presented in the publications reviewed, making direct comparison difficult. CONCLUSIONS: Despite the heterogeneity of the studies, it was concluded that ridge preservation procedures are effective in limiting horizontal and vertical ridge alterations in postextraction sites. There is no evidence to support the superiority of one technique over another. There is also no conclusive evidence that ridge preservation procedures improve the ability to place implants.
Resumo:
"NPS D-415"-- P. [3] of cover.
Resumo:
"CONF-770602."
Resumo:
In November 2006, the flood of record on the upper Nisqually River destroyed part of Sunshine Point Campground in Mount Rainier National Park, Washington. The Nisqually River migrated north and reoccupied five acres of its floodplain; Tahoma Creek partially avulsed into the west floodplain, topping banks of an undersized channel and flooding the campground. I assessed hazards to infrastructure at the old campground location, where the Park proposes to rebuild the remaining campground roads and sites. This assessment focuses on two major hazards: northward Nisqually River migration, which may reincorporate the floodplain into the river destroying infrastructure; and Tahoma Creek avulsions, which may flood the campgroud and deposit sediment burying campground infrastructure. I quantify northward migration by: estimating migration rates and changes to channel width; evaluating river occupation of the pre- and post-2006 campground; and estimating scour depths at revetments protecting the campground. I digitized the Nisqually River channels and channel centerlines from maps and images between 1955 and 2013 into a GIS, which I used to estimate migration rate and river width changes. Centerline migration rates average 9 ft/yr along the length of the Nisqually River study reach; at Sunshine Point lateral migration rates average 11 ft/yr. Maximum migration along the study reach was 19 ft/yr between 2006 and 2009. Greater than average migration rates and channel widths correspond to river confluences and include the Tahoma Creek confluence at Sunshine Point. To determine historical channel locations and the frequency that the river occupied different parts of its floodplain, I digitized the river from maps and images between 1903 and 2013. The Nisqually River flows through Sunshine Point Campground in eight out of 15 historical images. I assess scour at revetments protecting infrastructure from the Nisqually River during a 100-year recurrence interval flood using measured cross-sections. During a 100-year flood, the Nisqually River may scour up to 10 feet below the bed elevation. These scour depths can destabilize critical revetments leaving loose unconsolidated riverbanks exposed to Nisqually River flows. To determine the causes, locations, and frequency of flood hazards from Tahoma Creek avulsions, I field map avulsion channels and compare the results with imagery and channel width changes between 1955 and 2013. Mapped avulsion channels occur with swaths of dead vegetation or nascent vegetation; both dead and recent vegetation are visibly distinct from surrounding vegetation in aerial images. Times of changes to these vegetation anomalies correspond to increases in Tahoma Creek channel width. Avulsions have occurred at least three times in the study period: pre-1955, between 1979 and 1984, and in 2006. The 1984 and 2006 avulsions both occur after increases in Tahoma Creek reach averaged width. The NPS is considering two options to rebuild Sunshine Point Campground, both at the same location. The hazards posed by the Nisqually River and Tahoma Creek at Sunshine Point will affect both construction options equally. Migration hazards to the campground may be reduced by limiting the proposed campground infrastructure to an elevated ridge that has not been occupied by the Nisqually River since 1903. The hazards of damage from migration may be reduced by revetments, which were effective in preventing northward Nisqually River migration in 1959 and 1965. Tahoma Creek avulsions are related increased of Tahoma Creek reach averaged widths, which are near a 58- year maximum, and occurred during a 10-year flood in 1984. The campground may be as susceptible to flooding from avulsions during as little as a 10-year flood. A large avulsion may occur with the next significant Tahoma Creek width increase. Glacial retreat has been shown to increase debris flow activity and increase sediment delivery to Mount Rainier rivers. Increased sediment discharge has been correlated with aggradation, which will further encourage Tahoma Creek avulsions.