964 resultados para Pareto optimal solutions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mestrado em Radiações Aplicadas às Tecnologias da Saúde.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-objective optimization algorithms aim at finding Pareto-optimal solutions. Recovering Pareto fronts or Pareto sets from a limited number of function evaluations are challenging problems. A popular approach in the case of expensive-to-evaluate functions is to appeal to metamodels. Kriging has been shown efficient as a base for sequential multi-objective optimization, notably through infill sampling criteria balancing exploitation and exploration such as the Expected Hypervolume Improvement. Here we consider Kriging metamodels not only for selecting new points, but as a tool for estimating the whole Pareto front and quantifying how much uncertainty remains on it at any stage of Kriging-based multi-objective optimization algorithms. Our approach relies on the Gaussian process interpretation of Kriging, and bases upon conditional simulations. Using concepts from random set theory, we propose to adapt the Vorob’ev expectation and deviation to capture the variability of the set of non-dominated points. Numerical experiments illustrate the potential of the proposed workflow, and it is shown on examples how Gaussian process simulations and the estimated Vorob’ev deviation can be used to monitor the ability of Kriging-based multi-objective optimization algorithms to accurately learn the Pareto front.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recent study by Pichugin et al. recall the Hemp’s solution for uniform load of 1974, showing that if allowable tensile and compressive stresses are unequal then the Hemp’s arch is optimal provided the ratio of stresses falls within a certain interval. This work is undoubtedly an important pass forward to find an optimal solution for the mathematical problem stated by Hemp. Furthermore, the Authors suggest that their optimal solutions are potentially reasonable from a practical perspective for materials with more allowable compressive stress than tensile one, as this kind of materials used to be not too much expensive. In this paper we profoundly analyse the solutions of the Authors from this practical perspective finding that the original Hemp’s solution —albeit sub-optimal for the mathematical problem— leads to real designs that are more efficient than the theoretic optimal solutions of the Authors.We show that the reasons for this shocking fact has to do with the class of problems considered by Hemp and the Authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tässä diplomityössä määritellään varmistusjärjestelmän simulointimalli eli varmistusmalli. Varmistusjärjestelmän toiminta optimoidaan kyseisen varmistusmallin avulla. Optimoinnin tavoitteena on parantaa varmistusjärjestelmän tehokkuutta. Parannusta etsitään olemassa olevien varmistusjärjestelmän resurssien maksimaalisella hyödyntämisellä. Varmistusmalli optimoidaan evoluutioalgoritmin avulla. Optimoinnissa on useita tavoitteita, jotka ovat ristiriidassa keskenään. Monitavoiteoptimointiongelma muunnetaan yhden tavoitteen optimointiongelmaksi muodostamalla tavoitefunktio painotetun summan menetelmän avulla. Rinnakkain edellisen menetelmän kanssa käytetään myös Pareto-optimointia. Pareto-optimaalisen rintaman pisteiden etsintä ohjataan lähelle painotetun summan menetelmän optimipistettä. Evoluutioalgoritmin toteutuksessa käytetään hyväksi varmistusjärjestelmiin liittyvää ongelmakohtaista tietoa. Työn tuloksena saadaan varmistusjärjestelmän simulointi- sekä optimointityökalu. Simulointityökalua käytetään kartoittamaan nykyisen varmistusjärjestelmän toimivuutta. Optimoinnin avulla tehostetaan varmistusjärjestelmän toimintaa. Työkalua voidaan käyttää myös uusien varmistusjärjestelmien suunnittelussa sekä nykyisten varmistusjärjestelmien laajentamisessa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy policies and technological progress in the development of wind turbines have made wind power the fastest growing renewable power source worldwide. The inherent variability of this resource requires special attention when analyzing the impacts of high penetration on the distribution network. A time-series steady-state analysis is proposed that assesses technical issues such as energy export, losses, and short-circuit levels. A multiobjective programming approach based on the nondominated sorting genetic algorithm (NSGA) is applied in order to find configurations that maximize the integration of distributed wind power generation (DWPG) while satisfying voltage and thermal limits. The approach has been applied to a medium voltage distribution network considering hourly demand and wind profiles for part of the U.K. The Pareto optimal solutions obtained highlight the drawbacks of using a single demand and generation scenario, and indicate the importance of appropriate substation voltage settings for maximizing the connection of MPG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distribution networks paradigm is changing currently requiring improved methodologies and tools for network analysis and planning. A relevant issue is analyzing the impact of the Distributed Generation penetration in passive networks considering different operation scenarios. Studying DG optimal siting and sizing the planner can identify the network behavior in presence of DG. Many approaches for the optimal DG allocation problem successfully used multi-objective optimization techniques. So this paper contributes to the fundamental stage of multi-objective optimization of finding the Pareto optimal solutions set. It is proposed the application of a Multi-objective Tabu Search and it was verified a better performance comparing to the NSGA-II method. © 2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Devido ao auge do crescimento industrial na Região Norte e, em especial, o Pólo Industrial de Manaus (PIM), são necessários obter ferramentas matemáticas que facilitem ao especialista tomar decisões sobre a seleção e dimensionamento dos filtros harmônicos que proporcionam neutralizar os efeitos prejudiciais dos harmônicos gerados pelas cargas não lineares da indústria e alcançar conformidade com os padrões das normas de qualidade de energia correspondentes. Além disso, como os filtros harmônicos passivos têm a capacidade de gerar potência reativa à rede, estes meios são eficazes compensadores de potência reativa e, portanto, podem conseguir uma economia significativa no faturamento de energia elétrica consumida por essas instalações industriais. Esta tese tem como objetivo geral desenvolver um método matemático e uma ferramenta computacional para a seleção da configuração e parâmetros do projeto de um conjunto de filtros harmônicos passivos para sistemas elétricos industriais. Nesta ótica, o problema de otimização da compensação de harmônicos por meio de filtros passivos foi formulado como um problema multiobjetivo que considera tanto os objetivos da redução da distorção harmônica como da efetividade econômica do projeto considerando as características das tarifas brasileiras. Todavia, a formulação apresentada considera as restrições relevantes impostas pelas normas brasileiras e estrangeiras. A solução computacional para este problema foi conseguida, usando o algoritmo genético NSGA-II que determina um conjunto de soluções ótimas de Pareto (Fronteira) que permitem ao projetista escolher as soluções mais adequadas para o problema. Por conseguinte, a ferramenta computacional desenvolvida tem várias novidades como: não só calcula os parâmetros que caracterizam os filtros, como também seleciona o tipo de configuração e o número de ramos do filtro em cada barra candidata de acordo com um conjunto de configurações pré-estabelecidas; têm implementada duas normas para a avaliação das restrições de qualidade de energia (Prodist-Módulo 8 e IEEE 519-92) que podem ser selecionadas pelo usuário; determina soluções com bons indicadores de desempenho para vários cenários característicos e não característicos do sistema que permitem a representação das as variações diárias da carga; das variações dos parâmetros do sistema e dos filtros; avalia o custo das contas de energia numa rede elétrica industrial que tem diferentes condições de operação (cenários característicos); e avalia o efeito econômico de filtros de harmônicos como compensadores de potência reativa. Para desenvolver a ferramenta computacional adequada desta tese, foi empregado um modelo trifásico em coordenadas de fase para redes de energia elétrica industriais e de serviços onde foram feitos vários programas utilizando várias ferramentas computacionais adicionais. Estas ferramentas compreendem um programa de varredura de freqüência, um programa do fluxo de harmônicos por injeção de correntes e um programa de fluxo de potência à freqüência fundamental. Os resultados positivos desta tese, a partir da análise de vários exemplos práticos, mostram as vantagens do método desenvolvido.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes two new approaches for the sensitivity analysis of multiobjective design optimization problems whose performance functions are highly susceptible to small variations in the design variables and/or design environment parameters. In both methods, the less sensitive design alternatives are preferred over others during the multiobjective optimization process. While taking the first approach, the designer chooses the design variable and/or parameter that causes uncertainties. The designer then associates a robustness index with each design alternative and adds each index as an objective function in the optimization problem. For the second approach, the designer must know, a priori, the interval of variation in the design variables or in the design environment parameters, because the designer will be accepting the interval of variation in the objective functions. The second method does not require any law of probability distribution of uncontrollable variations. Finally, the authors give two illustrative examples to highlight the contributions of the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to propose a multi-criteria optimization and decision-making technique to solve food engineering problems. This technique was demostrated using experimental data obtained on osmotic dehydratation of carrot cubes in a sodium chloride solution. The Aggregating Functions Approach, the Adaptive Random Search Algorithm, and the Penalty Functions Approach were used in this study to compute the initial set of non-dominated or Pareto-optimal solutions. Multiple non-linear regression analysis was performed on a set of experimental data in order to obtain particular multi-objective functions (responses), namely water loss, solute gain, rehydration ratio, three different colour criteria of rehydrated product, and sensory evaluation (organoleptic quality). Two multi-criteria decision-making approaches, the Analytic Hierarchy Process (AHP) and the Tabular Method (TM), were used simultaneously to choose the best alternative among the set of non-dominated solutions. The multi-criteria optimization and decision-making technique proposed in this study can facilitate the assessment of criteria weights, giving rise to a fairer, more consistent, and adequate final compromised solution or food process. This technique can be useful to food scientists in research and education, as well as to engineers involved in the improvement of a variety of food engineering processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

* This paper is partially supported by the National Science Fund of Bulgarian Ministry of Education and Science under contract № I–1401\2004 "Interactive Algorithms and Software Systems Supporting Multicriteria Decision Making".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulated-gate bipolar transistor (IGBT) power modules find widespread use in numerous power conversion applications where their reliability is of significant concern. Standard IGBT modules are fabricated for general-purpose applications while little has been designed for bespoke applications. However, conventional design of IGBTs can be improved by the multiobjective optimization technique. This paper proposes a novel design method to consider die-attachment solder failures induced by short power cycling and baseplate solder fatigue induced by the thermal cycling which are among major failure mechanisms of IGBTs. Thermal resistance is calculated analytically and the plastic work design is obtained with a high-fidelity finite-element model, which has been validated experimentally. The objective of minimizing the plastic work and constrain functions is formulated by the surrogate model. The nondominated sorting genetic algorithm-II is used to search for the Pareto-optimal solutions and the best design. The result of this combination generates an effective approach to optimize the physical structure of power electronic modules, taking account of historical environmental and operational conditions in the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to present a methodology to develop cost-effective thermal management solutions for microelectronic devices, capable of removing maximum amount of heat and delivering maximally uniform temperature distributions. The topological and geometrical characteristics of multiple-story three-dimensional branching networks of microchannels were developed using multi-objective optimization. A conjugate heat transfer analysis software package and an automatic 3D microchannel network generator were developed and coupled with a modified version of a particle-swarm optimization algorithm with a goal of creating a design tool for 3D networks of optimized coolant flow passages. Numerical algorithms in the conjugate heat transfer solution package include a quasi-ID thermo-fluid solver and a steady heat diffusion solver, which were validated against results from high-fidelity Navier-Stokes equations solver and analytical solutions for basic fluid dynamics test cases. Pareto-optimal solutions demonstrate that thermal loads of up to 500 W/cm2 can be managed with 3D microchannel networks, with pumping power requirements up to 50% lower with respect to currently used high-performance cooling technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA) representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study that optimizes the ethanol production in the fermentation of Saccharomyces cerevisiae.