959 resultados para Parceiros redox


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Biotecnologia

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O presente trabalho teve como principais objectivos o estudo do mecanismo da libertação do ferro em proteínas da família da ferritina (DNA-binding proteins from starved cells, Dps), bem como a identificação, produção e caracterização de potenciais parceiros redox destas proteínas através da utilização de técnicas bioquímicas e espectroscópicas apropriadas. Foram identificadas no genoma de Marinobacter hydrocarbonoclasticus duas flavoproteínas (2375 e 3073) reconhecidas como possíveis parceiros redox da Dps de Pseudomonas nautica 617. Todas as proteínas foram expressas heterologamente em células de E. coli BL21 (DE3) e delineados protocolos de purificação em dois passos, por cromatografias de permuta iónica e de exclusão molecular, que permitiram obter rendimentos expressivos (Dps — 31,9 mg/L de cultura, Flavoproteína 2375 — 73 mg/L de cultura e Flavoproteína 3073 — 79,4 mg/L de cultura). Aquando da purificação da 2375 verificou-se que a estabilidade da holoproteína depende da força iónica, característica que limita a sua utilização como parceiro redox da Dps. O estudo da reacção de transferência electrónica foi iniciado com testes preliminares através da espectroscopia de UV/Visível, permitindo avaliar da ocorrência da reacção de redução do core férrico da Dps e concomitante libertação do produto final ferroso, por análise de uma mistura contendo NADH, flavoproteína 3073 oxidada e Dps core Fe. Este estudo não permite, contudo, estabelecer uma relação de causa efeito concreta e fiável que nos permita identificar o NADH como doador inicial de eletrões e ferro ferroso como produto final desta reacção. O mecanismo de libertação foi estudado em maior detalhe através de espectroscopia de Mössbauer permitindo estabelecer a natureza das diferentes espécies intervenientes na reacção e assim verificar, pela primeira vez, que na presença dos três componentes, acima mencionados, existe redução e libertação de ferro previamente incorporado na Dps, na forma de iões ferrosos, bem como determinar parâmetros cinéticos apropriados.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Devido às limitações de sistemas in vitro atuais, existe uma necessidade de modelos celulares especializados em mimetizar propriamente a biotransformação humana. Além da aplicação destes novos sistemas na avaliação e estudo de toxicidade químicos, estes sistemas permitem o uso em estudos funcionais e mecanísticos de enzimas de biotransformação humanas. Nesta dissertação é abordado o desenvolvimento de modelos celulares competentes em enzimas de biotransformação humanas, aplicado na avaliação de um dos principais metabolitos do fármaco antirretroviral Nevirapina (NVP), como também num estudo mecanístico do importante fator proteico na biotransformação humana, a NADPH citocromo P450 oxido-redutase (CPR). NVP é frequentemente usado no tratamento de HIV-1 e tem sido associado a efeitos adversos como lesões hepáticas e erupções cutâneas severas. Evidências apontam ao envolvimento de citocromos P450 e subsequente sulfonação por sulfotransferases na formação de metabolitos reativos. Contudo, testes padrão in vitro não demonstraram evidências de mutagenicidade ou clastogenicidade. Neste estudo, utilizando uma estirpe de S. typhimurium, competente na expressão controlável e estável de sulfotransferase 1A1 (SULT1A1) humana, demonstrou-se mutagenicidade de 12-hidroxi-NVP dependente de SULT1A1. A enzima CPR está envolvida nas principais reações de biotransformação de xenobióticos, além de interagir com outras proteínas importantes com funções celulares importantes. O mecanismo pelo qual CPR doa eletrões aos seus parceiros redox não é completamente claro. Foi desenvolvido um sistema de E. coli para ser aplicado em estudos mecanísticos sobre a doação de eletrões de CPR. Este novo sistema co expressa CPR e hemeoxigenase I (HO-1) humanas, que depende importantemente de CPR, sendo sustentada por sete eletrões doados por cada ciclo enzimático. As condições de cultura foram otimizadas para níveis de expressão CPR/HO-1 aproximados à estequiometria verificada em humanos. Este modelo células foi aplicado no desenvolvimento de um ensaio de cinética de HO-1, focando-se em vários parâmetros para a sua otimização.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central role of reactive oxygen species (ROS) in osteoclast differentiation and in bone homeostasis prompted us to characterize the redox regulatory system of osteoclasts. In this report, we describe the expression and functional characterization of PAMM, a CXXC motif-containing peroxiredoxin 2-like protein expressed in bone marrow monocytes on stimulation with M-CSF and RANKL. Expression of wild-type (but not C to G mutants of the CXXC domain) PAMM in HEK293 cells results in an increased GSH/GSSG ratio, indicating a shift toward a more reduced environment. Expression of PAMM in RAW264.7 monocytes protected cells from hydrogen peroxide-induced oxidative stress, indicating that PAMM regulates cellular redox status. RANKL stimulation of RAW 264.7 cells caused a decrease in the GSH/GSSG ratio (reflecting a complementary increase in ROS). In addition, RANKL-induced osteoclast formation requires phosphorylation and translocation of NF-kappa B and c-Jun. In stably transfected RAW 264.7 cells, PAMM overexpression prevented the reduction of GSH/GSSG induced by RANKL. Concurrently, PAMM expression completely abolished RANKL-induced p100 NF-kappa B and c-Jun activation, as well as osteoclast formation. We conclude that PAMM is a redox regulatory protein that modulates osteoclast differentiation in vitro. PAMM expression may affect bone resorption in vivo and help to maintain bone mass. Antioxid. Redox Signal. 13, 27-37.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Production of reactive oxygen species (ROS) due to chronic exposure to glucose has been associated with impaired beta cell function and diabetes. However, physiologically, beta cells are well equipped to deal with episodic glucose loads, to which they respond with a fine tuned glucose-stimulated insulin secretion (GSIS). In the present study, a systematic investigation in rat pancreatic islets about the changes in the redox environment induced by acute exposure to glucose was carried out. Methodology/Principal Findings: Short term incubations were performed in isolated rat pancreatic islets. Glucose dose- and time-dependently reduced the intracellular ROS content in pancreatic islets as assayed by fluorescence in a confocal microscope. This decrease was due to activation of pentose-phosphate pathway (PPP). Inhibition of PPP blunted the redox control as well as GSIS in a dose-dependent manner. The addition of low doses of ROS scavengers at high glucose concentration acutely improved beta cell function. The ROS scavenger N-acetyl-L-cysteine increased the intracellular calcium response to glucose that was associated with a small decrease in ROS content. Additionally, the presence of the hydrogen peroxide-specific scavenger catalase, in its membrane-permeable form, nearly doubled glucose metabolism. Interestingly, though an increase in GSIS was also observed, this did not match the effect on glucose metabolism. Conclusions: The control of ROS content via PPP activation by glucose importantly contributes to the mechanisms that couple the glucose stimulus to insulin secretion. Moreover, we identified intracellular hydrogen peroxide as an inhibitor of glucose metabolism intrinsic to rat pancreatic islets. These findings suggest that the intracellular adjustment of the redox environment by glucose plays an important role in the mechanism of GSIS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ubiquitin-proteasome system governs the half-life of most cellular proteins. Calorie restriction (CR) extends the maximum life span of a variety of species and prevents oxidized protein accumulation. We studied the effects of CR on the ubiquitin-proteasome system and protein turnover in aging Saccharomyces cerevisiae. CR increased chronological life span as well as proteasome activity compared to control cells. The levels of protein carbonyls, a marker of protein oxidation, and those of polyubiquitinated proteins were modulated by CR. Controls, but not CR cells, exhibited a significant increase in oxidized proteins. In keeping with decreased proteasome activity, polyubiquitinated proteins were increased in young control cells compared to time-matched CR cells, but were profoundly decreased in aged control cells despite decreased proteasomal activity. This finding is related to a decreased polyubiquitination ability due to the impairment of the ubiquitin-activating enzyme in aged control cells, probably related to a more oxidative microenvironment. CR preserves the ubiquitin-proteasome system activity. Overall, we found that aging and CR modulate many aspects of protein modification and turnover. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercise training is known to promote relevant changes in the properties of skeletal muscle contractility toward powerful fibers. However, there are few studies showing the effect of a well-established exercise training protocol on Ca(2+) handling and redox status in skeletal muscles with different fiber-type compositions. We have previously standardized a valid and reliable protocol to improve endurance exercise capacity in mice based on maximal lactate steady-state workload (MLSSw). The aim of this study was to investigate the effect of exercise training, performed at MLSSw, on the skeletal muscle Ca(2+) handling-related protein levels and cellular redox status in soleus and plantaris. Male C57BL/6J mice performed treadmill training at MLSSw over a period of eight weeks. Muscle fiber-typing was determined by myosin ATPase histochemistry, citrate synthase activity by spectrophotometric assay, Ca(2+) handling-related protein levels by Western blot and reduced to oxidized glutathione ratio (GSH:GSSG) by high-performance liquid chromatography. Trained mice displayed higher running performance and citrate synthase activity compared with untrained mice. Improved running performance in trained mice was paralleled by fast-to-slow fiber-type shift and increased capillary density in both plantaris and soleus. Exercise training increased dihydropyridine receptor (DHPR) alpha 2 subunit, ryanodine receptor and Na(+)/Ca(2+) exchanger levels in plantaris and soleus. Moreover, exercise training elevated DHPR beta 1 subunit and sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) 1 levels in plantaris and SERCA2 levels in soleus of trained mice. Skeletal muscle GSH content and GSH:GSSG ratio was increased in plantaris and soleus of trained mice. Taken together, our findings indicate that MLSSw exercise-induced better running performance is, in part, due to increased levels of proteins involved in skeletal muscle Ca(2+) handling, whereas this response is partially dependent on specificity of skeletal muscle fiber-type composition. Finally, we demonstrated an augmented cellular redox status and GSH antioxidant capacity in trained mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigated the role of ROS (reactive oxygen species) and COX (cyclooxygenase) in ethanol-induced contraction and elevation of [Ca(2+)](i) (intracellular [Ca(2+)]). Vascular reactivity experiments, using standard muscle bath procedures, showed that ethanol (1-800 mmol/l) induced contraction in endothelium-intact (EC(50): 306 +/- 34 mmol/l) and endothelium-denuded (EC(50): 180 +/- 40 mmol/l) rat aortic rings. Endothelial removal enhanced ethanol-induced contraction. Preincubation of intact rings with L-NAME [N(G)-nitro-L-arginine methyl ester; non-selective NOS (NO synthase) inhibitor, 100 mu mol/l], 7-nitroindazole [selective nNOS (neuronal NOS) inhibitor, 100 mu mol/l], oxyhaemoglobin (NO scavenger, 10 mu mol/l) and ODQ (selective inhibitor of guanylate cyclase enzyme, 1 mu mol/l) increased ethanol-induced contraction. Tiron [O(2)(-) (superoxide anion) scavenger, 1 mmol/l] and catalase (H(2)O(2) scavenger, 300 units/ml) reduced ethanol-induced contraction to a similar extent in both endothelium-intact and denuded rings. Similarly, indomethacin (non-selective COX inhibitor, 10 mu mol/l), SC560 (selective COX- I inhibitor, 1 mu mol/l), AH6809 [PGF(2 alpha) (prostaglandin F(2 alpha))] receptor antagonist, 10 mu mol/l] or SQ29584 [PGH(2)(prostaglandin H(2))/TXA(2) (thromboxane A(2)) receptor antagonist, 3 mu mol/l] inhibited ethanol-induced contraction in aortic rings with and without intact endothelium. In cultured aortic VSMCs (vascular smooth muscle cells), ethanol stimulated generation of O(2)(-) and H(2)O(2). Ethanol induced a transient increase in [Ca(2+)](i), which was significantly inhibited in VSMCs pre-exposed to tiron or indomethacin. Our data suggest that ethanol induces vasoconstriction via redox-sensitive and COX-dependent pathways, probably through direct effects on ROS production and Ca(2+) signalling. These findings identify putative molecular mechanisms whereby ethanol, at high concentrations, influences vascular reactivity. Whether similar phenomena occur in vivo at lower concentrations of ethanol remains unclear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arsenic (As) is a semimetallic element that is notorious for its toxicity and carcinogenicity. Arsenic can be removed by some ferns. The objectives of this study were to investigate the ability of Pteris vittata L. (Pteridophyta) and Phlebodium aureum (L.) J. Sm. (Polypodiaceae) to absorb inorganic As, in the form of arsenate and arsenite. The removal of As by ferns was observed at varying anion concentrations and As solubility in the absorbing plant. Results obtained with ferns on As-contaminated soil indicate that redox potential and iron (Fe) presence affected the solubility of As and the absorption capacity of ferns. Upon reduction to -200mV, the soluble As content increased to 400mV. The results indicate that Fe oxides and the influence of redox potential strongly affect As absorption. Under nonreducing conditions, Phlebodium aureum did not remove As as well as Pteris vittata. Under more reducing conditions (-200 to 0mV) and under similar soil conditions, the results show that the both ferns remove As.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain mitochondrial ATP-sensitive K+ channel (mito-K-ATP) opening by diazoxide protects against ischemic damage and excitotoxic cell death. Here we studied the redox properties of brain mito-K-ATP. Mito-K-ATP activation during excitotoxicity in cultured cerebellar granule neurons prevented the accumulation of reactive oxygen species (ROS) and cell death. Furthermore, mito-K-ATP activation in isolated brain mitochondria significantly prevented H2O2 release by these organelles but did not change Ca2+ accumulation capacity. Interestingly, the activity of mito-K-ATP was highly dependent on redox state. The thiol reductant mercaptopropionylglycine prevented mito-K-ATP activity, whereas exogenous ROS activated the channel. In addition, the use of mitochondrial substrates that led to higher levels of endogenous mitochondrial ROS release closely correlated with enhanced K+ transport activity through mito-K-ATP. Altogether, our results indicate that brain mito-K-ATP is a redox-sensitive channel that controls mitochondrial ROS release. (c) 2008 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we review recent findings that explain how mitochondrial bioenergetic functions and redox state respond to a hyperlipidemic in vivo environment and may contribute to the maintenance of a normal metabolic phenotype. The experimental model utilized to evidence these adaptive mechanisms is especially useful for these studies since it exhibits genetic hypertriglyceridemia and avoids complications introduced by high fat diets. Liver from hypertrigliceridemic (HTG) mice have a greater content of glycerolipids together with increased mitochondrial free fatty acid oxidation. HTG liver mitochondria have a higher resting respiration rate but normal oxidative phosphorylation efficiency. This is achieved by higher activity of the mitochondrial potassium channel sensitive to ATP (mitoK(ATP)). The mild uncoupling mediated by mitoK(ATP) accelerates respiration rates and reduces reactive oxygen species generation. Although this response is not sufficient to inhibit lipid induced extra-mitochondrial oxidative stress in whole liver cells it avoids amplification of this redox imbalance. Furthermore, higher mitoK(ATP) activity increases liver, brain and whole body metabolic rates. These mitochondrial adaptations may explain why these HTG mice do not develop insulin resistance and obesity even under a severe hyperlipidemic state. On the contrary, when long term high fat diets are employed, insulin resistance, fatty liver and obesity develop and mitochondrial adaptations are inefficient to counteract energy and redox imbalances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we describe the characterization of the complex [Fe(tpy-NH2)(2)](PF6)(2) (tpy-NH2 = bis[4`-(3-aminophenyl)-2, 2`:6`,2 ``-terpyridine]. The complex was oxidatively electropolymerized on glassy.-carbon electrodes in CH3CN/0.1 M tetraethylammonium perchlorate (TEAP) to generate polymer films that exhibit reversible oxidative electrochemical behavior in a wide potential range (0.0-1.6 V), as well as high conductivity and stability/durability. In situ spectrocyclic voltammetry of this modified electrode was carried out on a photodiode array spectrophotometer attached to a potentiostat, which provided UV-Vis absorption spectra of the redox species during the potential sweep. We determined charge transport parameters as a function of time and thickness of the modified electrode, and the results showed that poly-[[Fe(tpy-NH2)(2)](2+)](n) can be made to exhibit three regimes of charge transport behavior by manipulation of the film thickness and the experimental time-scale. Morphological characterization of the film was provided by atomic force microscopy. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanisms of leukocyte NADPH oxidase regulation remain actively investigated. We showed previously that vascular and macrophage oxidase complexes are regulated by the associated redox chaperone PDI. Here, we investigated the occurrence and possible underlying mechanisms of PDI-mediated regulation of neutrophil NADPH oxidase. In a semirecombinant cell-free system, PDI inhibitors scrRNase (100 mu g/mL) or bacitracin (1 mM) near totally suppressed superoxide generation. Exogenously incubated, oxidized PDI increased (by similar to 40%), whereas PDIred diminished (by similar to 60%) superoxide generation. No change occurred after incubation with PDI serine-mutated in all four redox cysteines. Moreover, a mimetic CxxC PDI inhibited superoxide production by similar to 70%. Thus, oxidized PDI supports, whereas reduced PDI down-regulates, intrinsic membrane NADPH oxidase complex activity. In whole neutrophils, immunoprecipitation and colocalization experiments demonstrated PDI association with membrane complex subunits and prominent thiol-mediated interaction with p47(phox) in the cytosol fraction. Upon PMA stimulation, PDI was mobilized from azurophilic granules to cytosol but did not further accumulate in membranes, contrarily to p47(phox). PDI-p47(phox) association in cytosol increased concomitantly to opposite redox switches of both proteins; there was marked reductive shift of cytosol PDI and maintainance of predominantly oxidized PDI in the membrane. Pulldown assays further indicated predominant association between PDIred and p47(phox) in cytosol. Incubation of purified PDI (> 80% reduced) and p47(phox) in vitro promoted their arachidonate-dependent association. Such PDI behavior is consistent with a novel cytosolic regulatory loop for oxidase complex (re) cycling. Altogether, PDI seems to exhibit a supportive effect on NADPH oxidase activity by acting as a redox-dependent enzyme complex organizer. J. Leukoc. Biol. 90: 799-810; 2011.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective - Synergistic interactions between aldosterone (Aldo) and angiotensin II (Ang II) have been implicated in vascular inflammation, fibrosis, and remodeling. Molecular mechanisms underlying this are unclear. We tested the hypothesis that c-Src activation, through receptor tyrosine kinase transactivation, is critically involved in synergistic interactions between Aldo and Ang II and that it is upstream of promigratory signaling pathways in vascular smooth muscle cells (VSMCs). Methods and Results - VSMCs from WKY rats were studied. At low concentrations (10(-10) mol/L) Aldo and Ang II alone did not influence c-Src activation, whereas in combination they rapidly increased phosphorylation (P<0.01), an effect blocked by eplerenone ( Aldo receptor antagonist) and irbesartan (AT1R blocker). This synergism was attenuated by AG1478 and AG1296 ( inhibitors of EGFR and PDGFR, respectively), but not by AG1024 (IGFR inhibitor). Aldo and Ang II costimulation induced c-Src-dependent activation of NAD(P)H oxidase and c-Src-independent activation of ERK1/2 (P<0.05), without effect on ERK5, p38MAPK, or JNK. Aldo/Ang II synergistically activated RhoA/Rho kinase and VSMC migration, effects blocked by PP2, apocynin, and fasudil, inhibitors of c-Src, NADPH oxidase, and Rho kinase, respectively. Conclusions - Aldo/Ang II synergistically activate c-Src, an immediate signaling response, through EGFR and PDGFR, but not IGFR transactivation. This is associated with activation of redox-regulated RhoA/Rho kinase, which controls VSMC migration. Although Aldo and Ang II interact to stimulate ERK1/2, such effects are c-Src-independent. These findings indicate differential signaling in Aldo-Ang II crosstalk and highlight the importance of c-Src in redox-sensitive RhoA, but not ERK1/2 signaling. Blockade of Aldo/Ang II may be therapeutically useful in vascular remodeling associated with abnormal VSMC migration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrated previously that, in mice with chronic angiotensin II-dependent hypertension, gp91phoxcontaining NADPH oxidase is not involved in the development of high blood pressure, despite being important in redox signaling. Here we sought to determine whether a gp91phox homologue, Nox1, may be important in blood pressure elevation and activation of redox-sensitive pathways in a model in which the renin-angiotensin system is chronically upregulated. Nox1-deficient mice and transgenic mice expressing human renin (TTRhRen) were crossed, and 4 genotypes were generated: control, TTRhRen, Nox1-deficient, and TTRhRen Nox1-deficient. Blood pressure and oxidative stress (systemic and renal) were increased in TTRhRen mice (P < 0.05). This was associated with increased NADPH oxidase activation. Nox1 deficiency had no effect on the development of hypertension in TTRhRen mice. Phosphorylation of c-Src, mitogen-activated protein kinases, and focal adhesion kinase was significantly increased 2-to 3-fold in kidneys from TTRhRen mice. Activation of c-Src, p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and focal adhesion kinase but not of extracellular signal regulated kinase 1/2 or extracellular signal regulated kinase 5, was reduced in TTRhRen/Nox1-deficient mice (P < 0.05). Expression of procollagen III was increased in TTRhRen and TTRhRen/Nox1-deficient mice versus control mice, whereas vascular cell adhesion molecule-1 was only increased in TTRhRen mice. Our findings demonstrate that, in Nox1-deficient TTRhRen mice, blood pressure is elevated despite reduced NADPH oxidase activation, decreased oxidative stress, and attenuated redox signaling. Our results suggest that Nox1-containing NADPH oxidase plays a key role in the modulation of systemic and renal oxidative stress and redox-dependent signaling but not in the elevation of blood pressure in a model of chronic angiotensin II-dependent hypertension.