895 resultados para Parathyroid hormone-related protein
Resumo:
The production and puriWcation of gilthead sea bream recombinant parathyroid hormone related protein [sbPTHrP(1–125)] using an Escherichia coli system and one step puriWcation process with continuous elution gel electrophoresis is reported. The cDNA encoding sbPTHrP(1–125) was cloned into a prokaryotic expression vector pET-11a. The recombinant plasmid was used to transfect E. coli BL21(DE3) pLysS and sbPTHrP(1–125) synthesis was induced by addition of 1mM isopropyl- -D-thiogalactopyranoside. The rapid one step isolation method gave pure sbPTHrP(1–125) as judged by SDS–PAGE and yielded up to 40mg/L of culture medium (3.3mg protein/g of bacteria). The bioactivity of recombinant sbPTHrP(1–125) assessed using an in vitro scale bioassay was found to be equipotent to PTHrP(1–34) in stimulating cAMP accumulation. Assessment of the immunological reactivity of the isolated protein by Western blot revealed it cross-reacts with antisera speciWc for the N-terminal and C-terminal region of PTHrP. In a radioimmunoassay speciWc for piscine N-terminal (1–34 aa) PTHrP, the recombinant sbPTHrP(1–125) was equipotent with PTHrP(1–34) in displacing labelled 125I-PTHrP(1–36) PTHrP from the antisera. The availability of recombinant sbPTHrP will allow the development of region speciWc assays and studies aimed at deWning post-secretory processing of this protein and its biological activity in Wsh.
Resumo:
In this study we describe the isolation and characterisation of the parathyroid hormone-related protein (PTHrP) gene from the teleost Fugu rubripes. The gene has a relatively simple structure, compared with tetrapod PTHrP genes, composed of three exons and two introns, encompassing 2.25 kb of genomic DNA. The gene encodes a protein of 163 amino acids, with a putative signal peptide of 37 amino acids and a mature peptide of 126 amino acids. The overall homology with known tetrapod PTHrP proteins is low (36%), with a novel sequence inserted between positions 38 and 65, the absence of the conserved pentapeptide (TRSAW) and shortened C-terminal domain. The N-terminus shows greater conservation (62%), suggesting that it may have a hypercalcaemic function similar to that of tetrapod PTHrP. In situ localisation and RT–PCR have demonstrated the presence of PTHrP in a wide range of tissues with varying levels of expression. Sequence scanning of overlapping cosmids has identified three additional genes, TMPO, LDHB and KCNA1, which map to human chromosome 12, with the latter two mapping to 12p12-11.2. PTHrP in human also maps to this chromosome 12 sub-region, thus demonstrating conservation of synteny between human and Fugu.
Resumo:
Background: Parathyroid hormone (PTH) and parathyroid hormone-related protein (PTH-rP) are two potent hypercalcemic hormones that act on the same targets. Autonomous secretion of the former is involved in primary hyperparathyroidism (PHPT), whereas the latter is responsible for humoral hypercalcemia of malignancy (HHM). Methods: From 250 consecutive, hypercalcemic serum samples sent to our laboratory for assessment of intact PTH, we were able to obtain clinical information, as well as an additional plasma sample for PTH-rP measurement, in 134 patients. At the time of sampling, patients could be classified into seven groups: cancer without known bone metastases (CaNoMeta, n=36), cancer with bone metastases (CaMeta, n=9), no evidence of cancer (noEvCa, n=71), sarcoidosis (Sarc, n=3), end-stage renal disease (ESRD, n=12), vitamin D overdose (VIT-D, n=2), and hyperthyroidism (Thyr, n=1). Results: In the CaNoMeta group, 29/36 patients had elevated PTH-rP levels, 9/36 patients had inappropriately elevated PTH levels, and 5/36 had elevated levels of both hormones. In the CaMeta group, three of the nine patients had inappropriately elevated PTH levels, two of them with concomitantly elevated PTH-rP levels. In the NoEvCa group, 63/71 patients had an inappropriate elevation of PTH levels and were diagnosed as having PHPT. Four of the 71 patients had elevated levels of both PTH and PTH-rP; three of them were in poor health and died within a short period of time. All of the ESRD patients had very high PTH and normal PTH-rP levels, except for one woman with high PTH-rP and undetectable PTH levels; she died from what later turned out to be a recurrent bladder carcinoma. In the Sarc, Vit-D, and Thyr groups, both PTH and PTH-rP levels were normal. Conclusions: (1) Elevated PTH-rP levels are a common finding in cancer patients without bone metastases. Intact PTH, however, should always be measured in hypercalcemic patients with malignancy because concurrent primary hyperparathyroidism is not rare. (2) Primary hyperparathyroidism accounts for hypercalcemia in 90% of patients without evidence of cancer whose PTH-rP levels may also be found to be elevated in a few cases, even some with surgically demonstrated parathyroid adenoma.
Resumo:
Parathyroid hormone-related protein (PTHrP) is a prohormone that is posttranslationally processed to a family of mature secretory forms, each of which has its own cognate receptor(s) on the cell surface that mediate the actions of PTHrP. In addition to being secreted via the classical secretory pathway and interacting with cell surface receptors in a paracrine/autocrine fashion, PTHrP appears to be able to enter the nucleus directly following translation and influence cellular events in an “intracrine” fashion. In this report, we demonstrate that PTHrP can be targeted to the nucleus in vascular smooth muscle cells, that this nuclear targeting is associated with a striking increase in mitogenesis, that this nuclear effect on proliferation is the diametric opposite of the effects of PTHrP resulting from interaction with cell surface receptors on vascular smooth muscle cells, and that the regions of the PTHrP sequence responsible for this nuclear targeting represent a classical bipartite nuclear localization signal. This report describes the activation of the cell cycle in association with nuclear localization of PTHrP in any cell type. These findings have important implications for the normal physiology of PTHrP in the many tissues which produce it, and suggest that gene delivery of PTHrP or modified variants may be useful in the management of atherosclerotic vascular disease.
Resumo:
Parathyroid hormone-related protein (PTHrP) is synthesized in the brain, and a single type of cloned receptor for the N-terminal portion of PTHrP and PTH is present in the central nervous system. Nothing is known about the physiological actions or signaling pathways used by PTHrP in the brain. Using cultured rat hippocampal neurons, we demonstrate that N-terminal PTHrP[1-34] and PTH[1-34] signal via cAMP and cytosolic calcium transients. The cAMP response showed strong acute (< or = 6 h) homologous and heterologous desensitization after preincubation with PTHrP or PTH. In contrast, the acute calcium response did not desensitize after preincubation with PTHrP; in fact, preincubation dramatically recruited additional responsive neurons. Unexpectedly, C-terminal PTHrP[107-139], which does not bind or activate the cloned PTH/PTHrP receptor, signaled in neurons via cytosolic calcium but not cAMP. Although some neurons responded to both PTHrP[1-34] and PTHrP[107-139], others responded only to PTHrP[1-34]. We conclude that certain hippocampal neurons exhibit dual signaling in response to PTHrP[1-34] and that some neurons have a receptor for C-terminal PTHrP that signals only via cytosolic calcium.
Resumo:
Recent studies have indicated that parathyroid hormone-related protein (PTHrP) may have important actions in lactation, affecting the mammary gland, and also calcium metabolism in the newborn and the mother. However, there are as yet no longitudinal studies to support the notion of an endocrine role of this peptide during nursing. We studied a group of 12 nursing mothers, mean age 32 years, after they had been nursing for an average of 7 weeks (B) and also 4 months after stopping nursing (A). It was assumed that changes occurring between A and B correspond to the effect of lactation. Blood was assayed for prolactin (PRL), PTHrP (two-site immunoradiometric assay with sheep antibody against PTHrP(1-40), and goat antibody against PTHrP(60-72), detection limit 0.3 pmol/l), intact PTH (iPTH), ionized calcium (Ca2+), 25-hydroxyvitamin D3 (25(OH)D3) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), alkaline phosphatase (alkP), as well as for creatinine (Cr), protein, phosphorus (P), and total calcium (Ca). Fasting 2-h urine samples were analyzed for Ca excretion (CaE) and renal phosphate threshold (TmP/GFR). PRL was significantly higher during lactation than after weaning (39 +/- 10 vs. 13 +/- 9 micrograms/l; p = 0.018) and so was PTHrP (2.8 +/- 0.35 vs. 0.52 +/- 0.04 pmol/l; p = 0.002), values during lactation being above the normal limit (1.3 pmol/l) in all 12 mothers. There was a significant correlation between PRL and PTHrP during lactation (r = 0.8, p = 0.002). Whole blood Ca2+ did not significantly change from A (1.20 +/- 0.02 mmol/l) to B (1.22 +/- 0.02, mmol/l), whereas total Ca corrected for protein (2.18 +/- 0.02 mmol/l) or uncorrected (2.18 +/- 0.02 mmol/l) significantly rose during lactation (2.31 +/- 0.02 mmol/l, p = 0.003 and 2.37 +/- 0.03 mmol/l, p = 0.002, respectively). Conversely, iPTH decreased during lactation (3.47 +/- 0.38 vs. 2.11 +/- 0.35 pmol/l, A vs. B, p = 0.02). Serum-levels of 25(OH)D3 and 1,25(OH)2D3 did not significantly change from A to B (23 +/- 2.3 vs. 24 +/- 1.9 ng/ml and 29.5 +/- 6.0 vs. 21.9 +/- 1.8 pg/ml, respectively). Both TmP/GFR and P were higher during lactation than after weaning (1.15 +/- 0.03 vs. 0.86 +/- 0.05 mmol/l GF, p = 0.003 and 1.25 +/- 0.03 vs. 0.96 +/- 0.05 mmol/l, p = 0.002, respectively) as was alkP (74.0 +/- 7.1 vs. 52.6 +/- 6.9 U/l, p = 0.003). CaE did not differ between A and B (0.015 +/- 0.003 vs. 0.017 +/- 0.003 mmol/l GF, A vs. B, NS). We conclude that lactation is accompanied by an increase in serum PRL. This is associated with a release of PTHrP into the maternal blood circulation. A rise in total plasma Ca ensues, probably in part by increased bone turnover as suggested by the elevation of alkP. PTH secretion falls, with a subsequent rise of TmP/GFR and plasma P despite high plasma levels of PTHrP.
Resumo:
During vertebrate limb development, growth plate chondrocytes undergo temporally and spatially coordinated differentiation that is necessary for proper morphogenesis. Parathyroid hormone-related peptide (PTHrP), its receptor, the PTH/PTHrP receptor, and Indian hedgehog are implicated in the regulation of chondrocyte differentiation, but the specific cellular targets of these molecules and specific cellular interactions involved have not been defined. Here we generated chimeric mice containing both wild-type and PTH/PTHrP receptor (−/−) cells, and analyzed cell–cell interactions in the growth plate in vivo. Abnormal differentiation of mutant cells shows that PTHrP directly signals to the PTH/PTHrP receptor on proliferating chondrocytes to slow their differentiation. The presence of ectopically differentiated mutant chondrocytes activates the Indian hedgehog/PTHrP axis and slows differentiation of wild-type chondrocytes. Moreover, abnormal chondrocyte differentiation affects mineralization of cartilaginous matrix in a non-cell autonomous fashion; matrix mineralization requires a critical mass of adjacent ectopic hypertrophic chondrocytes. Further, ectopic hypertrophic chondrocytes are associated with ectopic bone collars in adjacent perichondrium. Thus, the PTH/PTHrP receptor directly controls the pace and synchrony of chondrocyte differentiation and thereby coordinates development of the growth plate and adjacent bone.
Resumo:
To determine the role of PTHrP in fetal calcium metabolism, blood calcium was measured in mice homozygous (HOM) for deletion of the PTHrP gene. On day 18.5 of gestation, ionized calcium and the maternal–fetal calcium gradient were significantly reduced in HOM PTHrP-ablated fetuses compared with that of their littermates. To assess the placental contribution to the effect of PTHrP, 45Ca and 51Cr-EDTA (as a blood diffusional marker) were administered by intracardiac injection to pregnant, heterozygous dams on day 17.5 of gestation. Five minutes after the injection, whole fetal 45Ca accumulation was significantly decreased in HOM PTHrP-ablated fetuses compared with that of their littermates. Next, two fetuses from each litter were injected in utero with fragments of PTHrP, PTH, or diluent 1 h before administering 45Ca and 51Cr to the dam. PTHrP-(1–86) and PTHrP-(67–86) significantly increased relative 45Ca accumulation in HOM PTHrP-ablated fetuses, but PTHrP(1–34), PTH-(1–84), and the diluent had no effect. Finally, similar studies were performed on fetal mice that lacked the PTH/PTHrP receptor gene. Ionized calcium was significantly reduced in HOM PTH/PTHrP receptor-ablated fetuses. However, 5 min after maternal injection of 45Ca and 51Cr, relative accumulation of 45Ca was significantly increased in these fetuses. It was concluded that PTHrP is an important regulator of fetal blood calcium and placental calcium transport. In addition, the bioactivity of PTHrP for placental calcium transport is specified by a mid-molecular region that does not use the PTH/PTHrP receptor.
Resumo:
Mice in which the genes encoding the parathyroid hormone (PTH)-related peptide (PTHrP) or the PTH/PTHrP receptor have been ablated by homologous recombination show skeletal dysplasia due to accelerated endochondral bone formation, and die at birth or in utero, respectively. Skeletal abnormalities due to decelerated chondrocyte maturation are observed in transgenic mice where PTHrP expression is targeted to the growth plate, and in patients with Jansen metaphyseal chondrodysplasia, a rare genetic disorder caused by constitutively active PTH/PTHrP receptors. These and other findings thus indicate that PTHrP and its receptor are essential for chondrocyte differentiation. To further explore the role of the PTH/PTHrP receptor in this process, we generated transgenic mice in which expression of a constitutively active receptor, HKrk-H223R, was targeted to the growth plate by the rat α1 (II) collagen promoter. Two major goals were pursued: (i) to investigate how constitutively active PTH/PTHrP receptors affect the program of chondrocyte maturation; and (ii) to determine whether expression of the mutant receptor would correct the severe growth plate abnormalities of PTHrP-ablated mice (PTHrP−/−). The targeted expression of constitutively active PTH/PTHrP receptors led to delayed mineralization, decelerated conversion of proliferative chondrocytes into hypertrophic cells in skeletal segments that are formed by the endochondral process, and prolonged presence of hypertrophic chondrocytes with delay of vascular invasion. Furthermore, it corrected at birth the growth plate abnormalities of PTHrP−/− mice and allowed their prolonged survival. “Rescued” animals lacked tooth eruption and showed premature epiphyseal closure, indicating that both processes involve PTHrP. These findings suggest that rescued PTHrP−/− mice may gain considerable importance for studying the diverse, possibly tissue-specific role(s) of PTHrP in postnatal development.
Resumo:
Parathyroid hormone-related peptide (PTHrP) was initially identified as a product of malignant tumors that mediates paraneoplastic hypercalcemia. It is now known that the parathyroid hormone (PTH) and PTHrP genes are evolutionarily related and that the products of these two genes share a common receptor, the PTH/PTHrP receptor. PTHrP and the PTH/PTHrP receptor are widely expressed in both adult and fetal tissues, and recent gene-targeting and disruption experiments have implicated PTHrP as a developmental regulatory molecule. Apparent PTHrP functions include the regulation of endochondral bone development, of hair follicle formation, and of branching morphogenesis in the breast. Herein, we report that overexpression of PTHrP in chondrocytes using the mouse type II collagen promoter induces a novel form of chondrodysplasia characterized by short-limbed dwarfism and a delay in endochondral ossification. This features a delay in chondrocyte differentiation and in bone collar formation and is sufficiently marked that the mice are born with a cartilaginous endochondral skeleton. In addition to the delay, chondrocytes in the transgenic mice initially become hypertrophic at the periphery of the developing long bones rather than in the middle, leading to a seeming reversal in the pattern of chondrocyte differentiation and ossification. By 7 weeks, the delays in chondrocyte differentiation and ossification have largely corrected, leaving foreshortened and misshapen but histologically near-normal bones. These findings confirm a role for PTHrP as an inhibitor of the program of chondrocyte differentiation. PTHrP may function in this regard to maintain the stepwise differentiation of chondrocytes that initiates endochondral ossification in the midsection of endochondral bones early in development and that also permits linear growth at the growth plate later in development.
Resumo:
We have investigated the role of 23 candidate genes in the control of bone mineral density (BMD) by linkage studies in families of probands with osteoporosis (lumbar spine [LS] or femoral neck [FN] BMD T score < -2.5) and low BMD relative to an age- and gender-matched cohort (Z score < -2.0). One hundred and fifteen probands (35 male, 80 female) and 499 of their first- or second-degree relatives (223 males and 276 females) were recruited for the study. BMD was measured at the LS and FN using dual-energy X-ray absorptiometry and expressed as age- and gender-matched Z scores corrected for body mass index. The candidate genes studied were the androgen receptor, type I collagen A1 (COLIA1), COLIA2, COLIIA1, vitamin D receptor (VDR), colony-stimulating factor 1, calcium-sensing receptor, epidermal growth factor (EGF), estrogen receptor 1 (ESR1), fibrillin type 1, insulin-like growth factor 1, interleukin-1 alpha (IL-1α), interleukin-4 (IL-4), interleukin-6 (IL-6), interleukin-11 (IL-11), osteopontin, parathyroid hormone (PTH), PTH-related peptide, PTH receptor type 1 (PTHR1), transforming growth factor-beta 1, and tumor necrosis factors alpha and beta. Sixty-four microsatellites lying close to or within these genes were investigated for linkage with BMD. Using the program MapMaker/Sibs there was suggestive evidence of linkage between BMD and PTHR1 (maximum LOD score obtained [MLS] 2.7-3.5). Moderate evidence of linkage was also observed with EGF (MLS 1.8), COLIA1 (MLS 1.7), COLIIA1/VDR (MLS 1.7), ESR1 (MLS 1.4), IL-1α (MLS 1.4), IL-4 (MLS 1.2), and IL-6 (MLS 1.2). Variance components analysis using the program ACT, correcting for proband-wise ascertainment, also showed evidence of linkage (p ≤0.05) at markers close to or within the candidate genes IL- 1α, PTHR1, IL-6, and COLIIA1/VDR. Further studies will be required to confirm these findings, to refine the location of gene responsible for the observed linkage, and to screen the candidate genes targeted at these loci for mutations.
Resumo:
The skeleton is the first and most common site of distant relapse in breast and prostate carcinomas. Tumor bone disease is responsible for a considerable morbidity, which also makes major demands on resources for healthcare provision. Increased bone resorption in tumor bone disease appears to be essentially mediated by the ostoclasts, explaining why bisphosphonates have been successfully used for the treatment of malignant ostolysis. Hypercalcemia occurs in 10-20% of the patients with advanced cancer, and the uncoupling between bone resorption and bone formation is easily demonstrated by the measurement of bone markers. The differential diagnosis between tumor-induced hypercalcemia and primary hyperparathyroidism is most often easy when using intact parathyroid hormone (PTH) assays; moreover, parathyroid hormone-related protein (PTHrP) determination can be useful in selected cases. The diagnosis of bone metastases is often easy when the patient is symptomatic. The diagnostic usefulness of bone markers is limited, and the available data indicate that bone markers are so far unsuitable for an early diagnosis of neoplastic skeletal involvement on an individual basis. However, by combining bone-specific alkaline phosphatase (BALP) or modern bone resorption markers with specific tumor markers, such as PSA or CA15.3, the diagnostic sensitivity of bone markers can be improved. Their degree of elevation correlates with the tumor burden and has been shown to be an independent prognostic factor for several tumors. On the other hand, biochemical markers of bone turnover have the unique potential to simplify and improve the monitoring of metastatic bone disease, which remains a continuous challenge for the oncologist. Peptide-bound cross-links could be quite useful to discriminate between patients progressing early on treatment from those with longer disease control. Also, the diagnostic efficiency of a 50% increase in these markers could identify imminent progression. © 2006 Elsevier Inc. All rights reserved.
Resumo:
Objective. The use of glucocorticoids (GCs) in the treatment of RA is a frequent cause of bone loss. In vitro, however, this same class of steroids has been shown to promote the recruitment and/or maturation of primitive osteogenic precursors present in the colony forming unit-fibroblastic (CFU-F) fraction of human bone and marrow. In an effort to reconcile these conflicting observations, we investigated the effects of the synthetic GC dexamethasone (Dx) on parameters of growth and osteogenic differentiation in cultures of bone marrow stromal cells derived from a large cohort of adult human donors (n=30). Methods. Marrow suspensions were cultured in the absence and presence of Dx at concentrations between 10 pm and 1 µm. After 28 days we determined the number and diameter of colonies formed, the total number of cells, the surface expression of receptors for selected growth factors and extracellular matrix proteins and, based on the expression of the developmental markers alkaline phosphatase (AP) and the antigen recognized by the STRO-1 monoclonal antibody, the proportion of cells undergoing osteogenic differentiation and their extent of maturation. Results. At a physiologically equivalent concentration, Dx had no effect on the adhesion of CFU-F or on their subsequent proliferation, but did promote their osteogenic differentiation and further maturation. These effects were independent of changes in the expression of the receptors for fibroblast growth factors, insulin-like growth factor 1, nerve growth factor, platelet-derived growth factors and parathyroid hormone/parathyroid hormone-related protein, but were associated with changes in the number of cells expressing the 2 and 4, but not ß1, integrin subunits. At supraphysiological concentrations, the effects of Dx on the osteogenic recruitment and maturation of CFU-F and their progeny were maintained but at the expense of a decrease in cell number. Conclusions. A decrease in the proliferation of osteogenic precursors, but not in their differentiation or maturation, is likely to be a key factor in the genesis of GC-induced bone loss.
Resumo:
Le développement et l'homéostasie des os requièrent l'orchestration spatio-temporelle d'un grand nombre de signaux moléculaires. Ces signaux entraînent l'activation ou l'inhibition de différents facteurs de transcription, lesquels sont en mesure de contrôler la prolifération et la différenciation des ostéoblastes et des chondrocytes. L'intégrité de ces différents mécanismes se doit d'être maintenu tout au long de la vie. Ainsi, une anomalie dans l'un de ces mécanismes conduit à l'apparition de pathologies osseuses et métaboliques telles qu’une hypophosphatémie, l'ostéoporose ou l'ostéoarthrite (OA). Afin d'en apprendre davantage sur la biologie osseuse, le projet décrit dans cette thèse a pour objectif de caractériser de nouveaux mécanismes de régulation transcriptionnelle pour deux gènes importants dans le développement des os et le maintien de leur intégrité. Il s’agit du Paired-like Homeodomain Transcription Factor 1 (PITX1) et du Phosphate-regulating gene with homology to endopeptidase on the X chromosome (PHEX). Le premier mécanisme présenté dans cette thèse concerne la régulation transcriptionnelle du gène PITX1, un facteur de transcription à homéodomaine nécessaire, notamment, au développement des os des membres inférieurs et au maintien de l'intégrité du cartilage articulaire chez l'adulte. Ainsi, dans les chondrocytes articulaires, on note que l'expression de PITX1 est assurée par le recrutement du facteur de transcription E2F1 à deux éléments de réponse présents dans la région proximale du promoteur de PITX1. Aussi, dans les chondrocytes articulaires de patients souffrant d'OA, dans lesquels l'expression de PITX1 est fortement diminuée, un mécanisme de répression transcriptionnelle, lequel implique la protéine multifonctionnelle Prohibitin (PHB1), semble être activé. En effet, dans ces chondroytes, on note une forte accumulation nucléaire de PHB1 comparativement aux chondrocytes articulaires de sujets sains. Le second mécanisme présenté dans cette thèse concerne la répression transcriptionnelle de PHEX, la peptidase mutée dans le syndrome d'hypophosphatémie lié au chromosome X (X-Linked Hypophosphatemia, XLH), lequel se caractérise par une hypophosphatémie et une ostéomalacie. Le traitement d'ostéoblastes à la Parathyroid hormone-related protein (PTHrP) permet d’observer la répression de PHEX. Afin de caractériser le mécanisme responsable de cette répression, des expériences de gènes rapporteurs ont révélé la présence de deux éléments de réponse pour le répresseur transcriptionnel E4BP4 dans le promoteur de PHEX. La suppression de l'expression d'E4BP4 par l'utilisation d'ARN d'interférence a permis de valider que ce facteur de transcription est responsable de la répression de PHEX suite au traitement d'ostéoblastes à la PTHrP. En somme ces nouveaux mécanismes de régulation transcriptionnelle permettent de mieux comprendre la régulation de l'expression de PITX1 et de PHEX. Aussi, cette nouvelle implication de PHB1 dans la pathogenèse de l'OA offre de nouvelles possibilités de traitement et pourrait servir pour le diagnostic précoce de cette pathologie. Enfin, la caractérisation d'E4BP4 en tant que médiateur pour la répression de PHEX par la PTHrP suggère que ce répresseur transcriptionnel pourrait être impliqué dans le contrôle de la minéralisation des os et des niveaux de phosphate sanguin.
Resumo:
Leptin is a multifunctional hormone, produced predominantly in adipocytes. It regulates energy balance through its impact on appetite and fat metabolism, and its concentration indicates the size of body fat reserves. Leptin also plays a vital role in stretch-induced surfactant production during alveolar development in the fetus. The structure, expression pattern, and role of leptin have not previously been explored in marine mammals. Phocid seals undergo cyclical changes in body composition as a result of prolonged fasting and intensive foraging bouts and experience rapid, dramatic, and repeated changes in lung volume during diving. Here, we report the tissue-specific expression pattern of leptin in these animals. This is the first demonstration of leptin expression in the lung tissue of a mature mammal, in addition to its expression in the blubber and bone marrow, in common with other animals. We propose a role for leptin in seal pulmonary surfactant production, in addition to its likely role in long-term energy balance. We identify substitutions in the phocine leptin sequence in regions normally highly conserved between widely distinct vertebrate groups, and, using a purified seal leptin antiserum, we confirm the presence of the leptin protein in gray seal lung and serum fractions. Finally, we report the substantial inadequacies of using heterologous antibodies to measure leptin in unextracted gray seal serum.