490 resultados para Parasympathetic denervation
Resumo:
The indeterminate form of Chagas' disease is characterized by positive serology for the disease in the absence of clinical findings and in the presence of both normal esophagogram and electrocardiogram. When more sensitive methods were used, abnormalities have been described either in the esophagus or in the heart. The authors have studied simultaneously the esophagus and the heart in the same subjects. In thirteen adults with diagnosis of indeterminate form and nine adult controls, the esophageal manometry both in basal conditions and after stimulus (bethanecol) and vectorcardiogram were performed. In the control group none of the subjects presented concomitant esophageal and cardiac alterations while in the chagasic group 92,3% of the patients presented results simultaneously altered. It is concluded that the studied patients showed indications of parasympathetic denervation manifested by simultaneously esophageal and heart alterations.
Resumo:
The aim of this study was to compare the frequency of headache between Chagasic and Non-chagasic women. The cross-sectional study comprised 647 female ³40 years old, Chagasic (n = 362) and Controls (n = 285) at a Brazilian University Hospital. Chagasic were classified as Cardiac (n = 179), Megas (n = 58) or Indeterminate (n = 125) clinical forms. Headache was ascertained according to Headache International Society diagnostic criteria. The age (57.0 ± 11.3 versus 57.3 ± 10.4 years), and the percentage of white women (75.8% versus 77.1%) were similar between Chagasic and Controls, respectively. Headache was more prevalent among Chagasic (32.9%) than Controls (16.1%), mainly in Cardiac form (odds ratio, 2.41; 95% confidence interval, 1.38-4.23), phenomenon possibly related to parasympathetic denervation and cerebral vessels changes.
Resumo:
Various investigators agree that the incidence of cholelithiasis is greater in patients with Chagas disease. The most plausible explanation for this is based on the parasympathetic denervation that occurs over the whole digestive tract due to Chagas disease. In order to analyze the occurrence of this alteration, gallbladder neuron counts were performed on cholelithiasis patients with and without Chagas disease who were being treated at the Department of Digestive Surgery, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil. In the present study, a notable reduction in the number of neurons in the gallbladder wall was observed in Chagas patients, in comparison with non-Chagas subjects.
Resumo:
The pathogenesis of chagasic cardiomyopathy is not completely understood, but it has been correlated with parasympathetic denervation (neurogenic theory) and inflammatory activity (immunogenic theory) that could affect heart muscarinic acetylcholine receptor (mAChR) expression. In order to further understand whether neurogenic and/or immunogenic alterations are related to changes in mAChR expression, we studied two models of Trypanosoma cruzi infection: 1) in 3-week-old male Sprague Dawley rats chronically infected with T. cruzi and 2) isolated primary cardiomyocytes co-cultured with T. cruzi and peripheral blood mononuclear cells (PBMC). Using [³H]-quinuclidinylbenzilate ([³H]-QNB) binding assays, we evaluated mAChR expression in homogenates from selected cardiac regions, PBMC, and cultured cardiomyocytes. We also determined in vitro protein expression and pro-inflammatory cytokine expression in serum and cell culture medium by ELISA. Our results showed that: 1) mAChR were significantly (P < 0.05) up-regulated in right ventricular myocardium (means ± SEM; control: 58.69 ± 5.54, N = 29; Chagas: 72.29 ± 5.79 fmol/mg, N = 34) and PBMC (control: 12.88 ± 2.45, N = 18; Chagas: 20.22 ± 1.82 fmol/mg, N = 19), as well as in cardiomyocyte transmembranes cultured with either PBMC/T. cruzi co-cultures (control: 24.33 ± 3.83; Chagas: 43.62 ± 5.08 fmol/mg, N = 7 for both) or their conditioned medium (control: 37.84 ± 3.84, N = 4; Chagas: 54.38 ± 6.28 fmol/mg, N = 20); 2) [³H]-leucine uptake was increased in cardiomyocytes co-cultured with PBMC/T. cruzi-conditioned medium (Chagas: 21,030 ± 2321; control 10,940 ± 2385 dpm, N = 7 for both; P < 0.05); 3) plasma IL-6 was increased in chagasic rats, IL-1β, was increased in both plasma of chagasic rats and in the culture medium, and TNF-α level was decreased in the culture medium. In conclusion, our results suggest that cytokines are involved in the up-regulation of mAChR in chronic Chagas disease.
Resumo:
Our objective was to determine the effect of arachidonylethanolamide (anandamide, AEA) injected intracerebroventricularly (icv) into the lateral ventricle of the rat brain on submandibular gland (SMG) salivary secretion. Parasympathetic decentralization (PSD) produced by cutting the chorda tympani nerve strongly inhibited methacholine (MC)-induced salivary secretion while sympathetic denervation (SD) produced by removing the superior cervical ganglia reduced it slightly. Also, AEA (50 ng/5 µL, icv) significantly decreased MC-induced salivary secretion in intact rats (MC 1 µg/kg: control (C), 5.3 ± 0.6 vs AEA, 2.7 ± 0.6 mg; MC 3 µg/kg: C, 17.6 ± 1.0 vs AEA, 8.7 ± 0.9 mg; MC 10 µg/kg: C, 37.4 ± 1.2 vs AEA, 22.9 ± 2.6 mg). However, AEA did not alter the significantly reduced salivary secretion in rats with PSD, but decreased the slightly reduced salivary secretion in rats with SD (MC 1 µg/kg: C, 3.8 ± 0.8 vs AEA, 1.4 ± 0.6 mg; MC 3 µg/kg: C, 14.7 ± 2.4 vs AEA, 6.9 ± 1.2 mg; P < 0.05; MC 10 µg/kg: C, 39.5 ± 1.0 vs AEA, 22.3 ± 0.5 mg; P < 0.001). We showed that the inhibitory effect of AEA is mediated by cannabinoid type 1 CB1 receptors and involves GABAergic neurotransmission, since it was blocked by previous injection of the CB1 receptor antagonist AM251 (500 ng/5 µL, icv) or of the GABA A receptor antagonist, bicuculline (25 ng/5 µL, icv). Our results suggest that parasympathetic neurotransmission from the central nervous system to the SMG can be inhibited by endocannabinoid and GABAergic systems.
Resumo:
Having broad knowledge of anatomy is essential for practicing dentistry. Certain anatomical structures call for detailed studies due to their anatomical and functional importance. Nevertheless, some structures are difficult to visualize and identify due to their small volume and complicated access. Such is the case of the parasympathetic ganglia located in the cranial part of the autonomic nervous system, which include: the ciliary ganglion (located deeply in the orbit, laterally to the optic nerve), the pterygopalatine ganglion (located in the pterygopalatine fossa), the submandibular ganglion (located laterally to the hyoglossus muscle, below the lingual nerve), and the otic ganglion (located medially to the mandibular nerve, right beneath the oval foramen). The aim of this study was to present these structures in dissected anatomic specimens and perform a comparative analysis regarding location and morphology. The proximity of the ganglia and associated nerves were also analyzed, as well as the number and volume of fibers connected to them. Human heads were dissected by planes, partially removing the adjacent structures to the point we could reach the parasympathetic ganglia. With this study, we concluded that there was no significant variation regarding the location of the studied ganglia. Morphologically, our observations concur with previous classical descriptions of the parasympathetic ganglia, but we observed variations regarding the proximity of the otic ganglion to the mandibular nerve. We also observed that there were variations regarding the number and volume of fiber bundles connected to the submandibular, otic, and pterygopalatine ganglia.
Resumo:
OBJECTIVE: The aim of this study was to evaluate the role of angiotensin I, II and 1-7 on left ventricular hypertrophy of Wistar and spontaneously hypertensive rats submitted to sinoaortic denervation. METHODS: Ten weeks after sinoaortic denervation, hemodynamic and morphofunctional parameters were analyzed, and the left ventricle was dissected for biochemical analyses. RESULTS: Hypertensive groups (controls and denervated) showed an increase on mean blood pressure compared with normotensive ones (controls and denervated). Blood pressure variability was higher in denervated groups than in their respective controls. Left ventricular mass and collagen content were increased in the normotensive denervated and in both spontaneously hypertensive groups compared with Wistar controls. Both hypertensive groups presented a higher concentration of angiotensin II than Wistar controls, whereas angiotensin 1-7 concentration was decreased in the hypertensive denervated group in relation to the Wistar groups. There was no difference in angiotensin I concentration among groups. CONCLUSION: Our results suggest that not only blood pressure variability and reduced baroreflex sensitivity but also elevated levels of angiotensin II and a reduced concentration of angiotensin 1-7 may contribute to the development of left ventricular hypertrophy. These data indicate that baroreflex dysfunction associated with changes in the renin angiotensin system may be predictive factors of left ventricular hypertrophy and cardiac failure.
Resumo:
Background: The effects of renal denervation on cardiovascular reflexes and markers of nephropathy in diabetic-hypertensive rats have not yet been explored. Methods: Aim: To evaluate the effects of renal denervation on nephropathy development mechanisms (blood pressure, cardiovascular autonomic changes, renal GLUT2) in diabetic-hypertensive rats. Forty-one male spontaneously hypertensive rats (SHR) similar to 250 g were injected with STZ or not; 30 days later, surgical renal denervation (RD) or sham procedure was performed; 15 days later, glycemia and albuminuria (ELISA) were evaluated. Catheters were implanted into the femoral artery to evaluate arterial pressure (AP) and heart rate variability (spectral analysis) one day later in conscious animals. Animals were killed, kidneys removed, and cortical renal GLUT2 quantified (Western blotting). Results: Higher glycemia (p < 0.05) and lower mean AP were observed in diabetics vs. nondiabetics (p < 0.05). Heart rate was higher in renal-denervated hypertensive and lower in diabetic-hypertensive rats (384.8 +/- 37, 431.3 +/- 36, 316.2 +/- 5, 363.8 +/- 12 bpm in SHR, RD-SHR, STZ-SHR and RD-STZ-SHR, respectively). Heart rate variability was higher in renal-denervated diabetic-hypertensive rats (55.75 +/- 25.21, 73.40 +/- 53.30, 148.4 +/- 93 in RD-SHR, STZ-SHR-and RD-STZ-SHR, respectively, p < 0.05), as well as the LF component of AP variability (1.62 +/- 0.9, 2.12 +/- 0.9, 7.38 +/- 6.5 in RD-SHR, STZ-SHR and RD-STZ-SHR, respectively, p < 0.05). GLUT2 renal content was higher in all groups vs. SHR. Conclusions: Renal denervation in diabetic-hypertensive rats improved previously reduced heart rate variability. The GLUT2 equally overexpressed by diabetes and renal denervation may represent a maximal derangement effect of each condition.
Resumo:
SILVA, B. M., F. J. NEVES, M. V. NEGRÃO, C. R. ALVES, R. G. DIAS, G. B. ALVES, A. C. PEREIRA, M. Urbana A. RONDON, J. E. KRIEGER, C. E. NEGRÃO, and A. C. DA NOBREGA. Endothelial Nitric Oxide Synthase Polymorphisms and Adaptation of Parasympathetic Modulation to Exercise Training. Med. Sci. Sports Exerc., Vol. 43, No. 9, pp. 1611-1618, 2011. Purpose: There is a large interindividual variation in the parasympathetic adaptation induced by aerobic exercise training, which may be partially attributed to genetic polymorphisms. Therefore, we investigated the association among three polymorphisms in the endothelial nitric oxide gene (-786T>C, 4b4a, and 894G>T), analyzed individually and as haplotypes, and the parasympathetic adaptation induced by exercise training. Methods: Eighty healthy males, age 20-35 yr, were genotyped by polymerase chain reaction-restriction fragment length polymorphism analysis, and haplotypes were inferred using the software PHASE 2.1. Autonomic modulation (i.e., HR variability and spontaneous baroreflex sensitivity) and peak oxygen consumption ((V) over dotO(2peak)) were measured before and after training (running, moderate to severe intensity, three times per week, 60 min.day(-1), during 18 wk). Results: Training increased (V) over dotO(2peak) (P < 0.05) and decreased mean arterial pressure (P < 0.05) in the whole sample. Subjects with the -786C polymorphic allele had a significant reduction in baroreflex sensitivity after training (change: wild type (-786TT) = 2% +/- 89% vs polymorphic (-786TC/CC) = -28% +/- 60%, median +/- quartile range, P = 0.03), and parasympathetic modulation was marginally reduced in subjects with the 894T polymorphic allele (change: wild type (894GG) = 8% +/- 67% vs polymorphic (894GT/TT) = -18% +/- 59%, median +/- quartile range, P = 0.06). Furthermore, parasympathetic modulation percent change was different between the haplotypes containing wild-type alleles(-786T/4b/894G) and polymorphic alleles at positions -786 and 894 (-786C/4b/894T) (-6% +/- 56% vs -41% +/- 50%, median T quartile range, P = 0.04). Conclusions: The polymorphic allele at position -786 and the haplotype containing polymorphic alleles at positions -786 and 894 in the endothelial nitric oxide gene were associated with decreased parasympathetic modulation after exercise training.
Resumo:
Background. The main purpose of the present investigation was to describe a model of intestinal denervation and in situ intestinal ischemia-reperfusion injury in adult rats, with utilization of the distal branch of the superior mesenteric artery close to the cecum for perfusion. Methods. In the root of the mesentery, the mesenteric artery and vein were completely isolated. Close to the cecal valve, a lymphatic node served as the reference point for the localization of the cecal artery, which was cannulated for perfusion with cold lactated Ringer`s solution. One hundred adult male rats were utilized in the study. Results. In a pilot study, we demonstrated that the cold ischemia time was sufficient to promote histopathologic intestinal changes characteristic of ischemia-reperfusion injury. Among 88 operated animals, 62 (70.5%) survived the procedure. Conclusion. The experimental model described herein has the advantage of preserving the entire intestine, which makes it more suitable for studies of physiological and morphological alterations after intestinal transplantation.
Resumo:
Vagal Denervation and Neurally Mediated Syncope. A 15-year-old female patient presented with frequent episodes of vasovagal syncope refractory to non-pharmacological and pharmacological measures. Two tilt-table tests performed before and after conventional therapy were positive and reproduced the patient`s clinical symptoms. Selective vagal denervation, guided by HFS, was performed. Six radiofrequency pulses were applied on the left and right sides of the interatrial septum, abolishing vagal responses at these locations. Basal sinus node and Wenckebach cycle lengths changed significantly following ablation. A tilt test performed after denervation was negative and revealed autonomic tone modification. The patient reported significant improvement in quality of life and remained asymptomatic for 9 months after denervation. After this period, three episodes of NMS occurred during a 4-month interval and a tilt test performed 11 months after the procedure demonstrated vagal activity recovery. (J Cardiovasc Electrophysiol, Vol. 20, pp. 558-563, May 2009).
Resumo:
Gastric Palsy Following AF Vagal Ablation. We report a case of a 55-year-old man with vagal paroxysmal atrial fibrillation (AF) who was submitted to selective epicardial and endocardial atrial vagal denervation with the objective of treating AF. Radiofrequency pulses were applied on epicardial and endocardial surface of the left atrium close to right pulmonary veins (PVs) and also on epicardial surface close to left inferior PV. Following the procedure, patient presented with symptoms of gastroparesis, which was documented on CT scan and gastric emptying scintigraphy. Symptoms were transient and the patient recovered completely.
Resumo:
Background: The relation between left ventricular filing velocities determined by Doppler echocardiography and autonomic nervous system function assessed by heart rate variability (HRV) is unclear. The aim of this study was to evaluate the influence of the autonomic nervous system assessed by the time and frequency domain indices of HRV in the Doppler indices of left ventricular diastolic filling velocities in patients without heart disease. Methods: We studied 451 healthy individuals (255 female [56.4%]) with normal blood pressure, electrocardiogram, chest x-ray, and treadmill electrocardiographic exercise stress test results, with a mean age of 43 +/- 12 (range 15-82) years, who underwent transthoracic Doppler echocardiography and 24-hour electrocardiographic ambulatory monitoring. We studied indices of HRV on time (standard deviation [SD] of all normal sinus RR intervals during 24 hours, SD of averaged normal sinus RR intervals for all 5-minute segments, mean of the SD of all normal sinus RR intervals for all 5-minute segments, root-mean-square of the successive normal sinus RR interval difference, and percentage of successive normal sinus RR intervals > 50 ms) and frequency (low frequency, high frequency, very low frequency, low frequency/high frequency ratio) domains relative to peak flow velocity during rapid passive filling phase (E), atrial contraction (A), E/A ratio, E-wave deceleration time, and isovolumic relaxation time. Statistical analysis was performed with Pearson correlation and logistic regression. Results: Peak flow velocity during rapid passive filling phase (E) and atrial contraction (A), E/A ratio, and deceleration time of early mitral inflow did not demonstrate a significant correlation with indices of HRV in time and frequency domain. We found that the E/A ratio was < 1 in 45 individuals (10%). Individuals with an E/A ratio < 1 had lower indices of HRV in frequency domain (except low frequency/high frequency) and lower indices of the mean of the SD of all normal sinus RR intervals for all 5-minute segments, root-mean-square of the successive normal sinus RR interval difference, and percentage of successive normal sinus RR intervals > 50 ms in time domain. Logistic regression demonstrated that an E/A ratio < 1 was associated with lower HF. Conclusion: Individuals with no evidence of heart disease and an E/A ratio < 1 demonstrated a significant decrease in indexes of HRV associated with parasympathetic modulation. (J Am Soc Echocardiogr 2010;23: 762-5.)
Resumo:
Introduction. Orthotopic heart transplantation renders the recipient denervated. This remodeling of the intrinsic cardiac nervous system should be taken in account during functional evaluation for allograft coronary artery disease. Dobutamine stress echocardiography (DSE) has been used to detect patients at greater risk. The aim of this study was to determine whether patients with various autonomic response levels, and supposed reinnervation patterns, show the same response to DSE. Methods. We studied 20 patients who had survived more than 5 years after orthotopic heart transplantation. All patients underwent a Holter evaluation. We considered patients with low variability to be those with less than a 40-bpm variation from the lowest to highest heart rate, so-called ""noninnenervated"" (group NI). Patients who had 40-bpm or more variation were considered to show high variability and called ""reinnervated"" (group RI). After that, all patients performed an ergometric test and DSE. Results. Groups were defined as NI (n = 9) and RI (n = 11). Ergometric tests confirmed this response with NI patients showing less variability when compared to RI patients (P = .0401). During DSE, patients showed similar median heart rate responses according to the dobutamine dose. Spearmen correlation showed r = 1.0 (P = .016). Conclusions: DES was effective to reach higher heart rates, probably related to catecholamine infusion. These findings may justify a better response when evaluating cardiac allograft vasculopathy in heart transplant patients.