964 resultados para Parasitic Diseases.
Resumo:
Parasitic diseases which during their course in the host switch the immune system from a T helper 1 to a T helper 2 response may be detrimental to the host, contributing to granuloma formation, eosinophilia, hyper-IgE, and increased susceptibility to bacterial and fungal infections. Patients and animals with acute schistosomiasis and hyper-IgE in their serum develop pyogenic liver abscess in the presence of bacteremia caused by Staphylococcus aureus. The Salmonella-S. mansoni association has also been well documented. The association of tropical pyomyositis (pyogenic muscle abscess) and pyogenic liver abscess with Toxocara infection has recently been described in the same context. In tropical countries that may be an interesting explanation for the great morbidity of bacterial diseases. If the association of parasitic infections and pyogenic abscesses and/or fungal diseases are confirmed, there will be a strong case in favor of universal treatment for parasitic diseases to prevent or decrease the morbidity of superinfection with bacteria and fungi.
Resumo:
We all hope that biotechnology will answer some social and economical unavoidable requirements of the modern life. It is necessary to improve agriculture production, food abundance and health quality in a sustainable development. It is indeed a hard task to keep the progress on taking into account the rational use of genetic resources and the conservation of biodiversity. In this context, a historical perspective and prospects of the biomedical research on parasitic diseases is described in a view of three generations of investigators. This work begins with a picture of the scientific progress on biomedical research and human health over the last centuries. This black-and-white picture is painted by dissecting current advancements of molecular biology and modern genetics, which are outlined at the meaning of prospecting achievements in health science for this new millenium.
Resumo:
In the State of Amazonas, Brazil, urban expansion together with precarious basic sanitation conditions and human settlement on river banks has contributed to the persistence of waterborne and intestinal parasitic diseases. Time series of the recorded cases of cholera, typhoid fever, hepatitis A and leptospirosis are described, using data from different levels of the surveillance systems. The sources for intestinal parasitosis prevalence data (non-compulsory reporting in Brazil) were Medical Literature Analysis and Retrieval System Online (MEDLINE), Literatura Latino-Americana (LILACS) and the annals of major scientific meetings. Relevant papers and abstracts in all languages were accessed by two independent reviewers. The references cited by each relevant paper were scrutinized to locate additional papers. Despite its initial dissemination across the entire State of Amazonas, cholera was controlled in 1998. The magnitude of typhoid fever has decreased; however, a pattern characterized by eventual outbreaks still remains. Leptospirosis is an increasing cause of concern in association with the annual floods. The overall prevalence of intestinal parasites is high regardless of the municipality and the characteristics of areas and populations. The incidence of hepatitis A has decreased over the past decade. A comparison of older and recent surveys shows that the prevalence of intestinal parasitic diseases has remained constant. The load of waterborne and intestinal parasitic diseases ranks high among the health problems present in the State of Amazonas. Interventions aiming at basic sanitation and vaccination for hepatitis A were formulated and implemented, but assessment of their effectiveness in the targeted populations is still needed.
Resumo:
A review of the role of the environment as a determinant of infectious and parasitic diseases is presented. Historical considerations and the several environmental classifications of diseases are introduced. In a broader perspective the subject is analyzed in view of the emergence of the environmental health area, with its new paradigms. A review of epidemiological studies about environmental sanitation conditions and measures is presented, analyzing the conclusions derived from 256 studies. Finally, an epidemiological study carried out in Betim, Minas Gerais is briefly described, in order to illustrate the potentiality of this kind of study. Setting priorities of interventions regarding diarrhea control was the aim of this investigation. Conclusion about the role of this approach to optimize preventive measures for the control of infectious and parasitic diseases, of sound importance to the reality of the developing world, is stated.
Resumo:
The opportunities and challenges for the study and control of parasitic diseases in the 21st century are both exciting and daunting. Based on the contributions from this field over the last part of the 20th century, we should expect new biologic concepts will continue to come from this discipline to enrich the general area of biomedical research. The general nature of such a broad category of infections is difficult to distill, but they often depend on well-orchestrated, complex life cycles and they often involve chronic, relatively well-balanced host/parasite relationships. Such characteristics force biological systems to their limits, and this may be why studies of these diseases have made fundamental contributions to molecular biology, cell biology and immunology. However, if these findings are to continue apace, parasitologists must capitalize on the new findings being generated though genomics, bioinformatics, proteomics, and genetic manipulations of both host and parasite. Furthermore, they must do so based on sound biological insights and the use of hypothesis-driven studies of these complex systems. A major challenge over the next century will be to capitalize on these new findings and translate them into successful, sustainable strategies for control, elimination and eradication of the parasitic diseases that pose major public health threats to the physical and cognitive development and health of so many people worldwide.
Resumo:
The ancestors of present-day man (Homo sapiens sapiens) appeared in East Africa some three and a half million years ago (Australopithecs), and then migrated to Europe, Asia, and later to the Americas, thus beginning the differentiation process. The passage from nomadic to sedentary life took place in the Middle East in around 8000 BC. Wars, spontaneous migrations and forced migrations (slave trade) led to enormous mixtures of populations in Europe and Africa and favoured the spread of numerous parasitic diseases with specific strains according to geographic area. The three human plasmodia (Plasmodium falciparum, P. vivax, and P. malariae) were imported from Africa into the Mediterranean region with the first human migrations, but it was the Neolithic revolution (sedentarisation, irrigation, population increase) which brought about actual foci for malaria. The reservoir for Leishmania infantum and L. donovani - the dog - has been domesticated for thousands of years. Wild rodents as reservoirs of L. major have also long been in contact with man and probably were imported from tropical Africa across the Sahara. L. tropica, by contrast, followed the migrations of man, its only reservoir. L. infantum and L. donovani spread with man and his dogs from West Africa. Likewise, for thousands of years, the dog has played an important role in the spread and the endemic character of hydatidosis through sheep (in Europe and North Africa) and dromadary (in the Sahara and North Africa). Schistosoma haematobium and S. mansoni have existed since prehistoric times in populations living in or passing through the Sahara. These populations then transported them to countries of Northern Africa where the specific, intermediary hosts were already present. Madagascar was inhabited by populations of Indonesian origin who imported lymphatic filariosis across the Indian Ocean (possibly of African origin since the Indonesian sailors had spent time on the African coast before reaching Madagascar). Migrants coming from Africa and Arabia brought with them the two African forms of bilharziosis: S. haematobium and S. mansoni.
Resumo:
Psychodid sand flies are blood-sucking fly vectors of several parasitic diseases. The oldest definitive record of this group is from the Lower Cretaceous amber of Lebanon (circa -135 to -125 My), but the high diversity within this group supports the idea that the psychodoids originated much earlier in history. The palaeontology demonstrates that the Lower Cretaceous representatives of the different subfamilies of Psychodidae had similar morphology and were blood-feeders, which supports Hennig's hypothesis on the ground plan structure of this family. Historical relationship between sand flies and diseases is unclear up to the present time, but this relationship could be as old as the origin of psychodoids because of the blood-feeding life mode.
Resumo:
Parasites have to survive in their vertebrate host during a sufficiently prolonged period of time to achieve their life cycle through successful transmission via insect vectors. In their vertebrate hosts, parasites are often confronted by vigorous effector immune responses that they have to subvert somehow to be able to outlast and be successfully transmitted.
Resumo:
From a technical standpoint the most widely used tests for serology include the ELISA (enzyme linked immunosorbent assay), the IFA (indirect fluorescence assay), and the immunoblot. ELISA tests are widely used as screening assays since they harbor a high sensitivity. The main pitfall of serologies is the frequency of cross-reactions, especially between the different helminths. This is why positive results should be confirmed by a second test method with a higher specificity. Results need also to be put in the perspective of the patient history, clinical signs and laboratory findings. Serological tests are most appropriate when the parasite cannot be documented by direct examination (by eye or under the microscope) and during the pre-patent period. Serologies for parasites are also useful when an unexplained eosinophilia is present.
Resumo:
The essential role of cytokines in parasitic diseases has been emphasised since the in vivo description of the importance of T helper 1 (Th1) and T helper 2 (Th2) CD4+ T cell responses in resistance and susceptibility to infection with L. major in mice. Th1 cells produced IL-2, IFN-gamma and Lymphotoxin T (LT) and Th2 cells produce IL-4, IL-5 and IL-13. In this model of infection the correlation between on the one hand resistance to infection and the development of a Th1 response and on the other hand susceptibility and Th2 cell development allowed the identification of the mechanisms directing the differentiation of CD4+ T cell precursors towards either Th1 type or Th2 type responses. Cytokines are the crucial inducer of functional CD4+ T cell subset differentiation during infection with L. major. IL-12 and IFN-gamma direct the differentiation of Th1 response and IL-4 of a Th2 response. In susceptible mice, careful analysis of IL-4 production during the first days of infection has shown that the IL-4 produced as a result of a very early burst of IL-4 mRNA expression (16 hours) plays a essential role in the maturation of a Th2 CD4+ T cell response by rendering the CD4+ T cell precursors unresponsive to IL-12. Activation of a restricted population of CD4+ T cells expressing the V beta 4 V alpha 8 TCR heterodimer after recognition of a single antigen, the LACK (Leishmania Activated c Kinase) antigen, resulted in this rapid production of IL-4 required for the subsequent CD4+ T cell differentiation. Thus, tolerization of these cells might contribute a strategy for preventing infection with L. major.
Resumo:
Apoptosis, a form of programmed cell death (PCD), has been described as essential for normal organogenesis and tissue development, as well as for the proper function of cell-renewal systems in adult organisms. Apoptosis is also pivotal in the pathogenesis of several different diseases. In this paper we discuss, from two different points of view, the role of apoptosis in parasitic diseases. The description of apoptotic death in three different species of heteroxenic trypanosomatids is reviewed, and considerations on the phylogenesis of apoptosis and on the eventual role of PCD on their mechanism of pathogenesis are made. From a different perspective, an increasing body of evidence is making clear that regulation of host cell apoptosis is an important factor on the definition of a host-pathogen interaction. As an example, the molecular mechanisms by which Trypanosoma cruzi is able to induce apoptosis in immunocompetent cells, in a murine model of Chagas' disease, and the consequences of this phenomenon on the outcome of the experimental disease are discussed.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)