943 resultados para Parameter uncertainties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work considers the vibrating system that consists of a snap-through truss absorber coupled to an oscillator under excitation of an electric motor with an eccentricity and limited power, characterizing a non-ideal oscillator. It is aimed to use the non-linearity and quasi-zero stiffness of absorber (snap-through truss absorber) to obtain a significantly attenuation the jump phenomenon. There is also an interest to exhibit the reduction of Sommerfeld effect, to confirm the saturation phenomenon occurrence and show the power transfer in a non-linear structure, evidencing the pumping energy. As shown by simulations in this work, this absorber allows the energy pumping before and during the jump phenomenon, decreasing the higher amplitudes of considered system. Additionally, the occurrence of saturation phenomenon due use of snap-through truss absorber is verified. The analysis of parameter uncertainties was introduced. Sensitivity of system with parametric errors demonstrated a trustable system. © IMechE 2012.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mathematical models are increasingly used in environmental science thus increasing the importance of uncertainty and sensitivity analyses. In the present study, an iterative parameter estimation and identifiability analysis methodology is applied to an atmospheric model – the Operational Street Pollution Model (OSPMr). To assess the predictive validity of the model, the data is split into an estimation and a prediction data set using two data splitting approaches and data preparation techniques (clustering and outlier detection) are analysed. The sensitivity analysis, being part of the identifiability analysis, showed that some model parameters were significantly more sensitive than others. The application of the determined optimal parameter values was shown to succesfully equilibrate the model biases among the individual streets and species. It was as well shown that the frequentist approach applied for the uncertainty calculations underestimated the parameter uncertainties. The model parameter uncertainty was qualitatively assessed to be significant, and reduction strategies were identified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Doutor em Engenharia do Ambiente pela Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Time-lapse crosshole ground-penetrating radar (GPR) data, collected while infiltration occurs, can provide valuable information regarding the hydraulic properties of the unsaturated zone. In particular, the stochastic inversion of such data provides estimates of parameter uncertainties, which are necessary for hydrological prediction and decision making. Here, we investigate the effect of different infiltration conditions on the stochastic inversion of time-lapse, zero-offset-profile, GPR data. Inversions are performed using a Bayesian Markov-chain-Monte-Carlo methodology. Our results clearly indicate that considering data collected during a forced infiltration test helps to better refine soil hydraulic properties compared to data collected under natural infiltration conditions

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over the past decade, significant interest has been expressed in relating the spatial statistics of surface-based reflection ground-penetrating radar (GPR) data to those of the imaged subsurface volume. A primary motivation for this work is that changes in the radar wave velocity, which largely control the character of the observed data, are expected to be related to corresponding changes in subsurface water content. Although previous work has indeed indicated that the spatial statistics of GPR images are linked to those of the water content distribution of the probed region, a viable method for quantitatively analyzing the GPR data and solving the corresponding inverse problem has not yet been presented. Here we address this issue by first deriving a relationship between the 2-D autocorrelation of a water content distribution and that of the corresponding GPR reflection image. We then show how a Bayesian inversion strategy based on Markov chain Monte Carlo sampling can be used to estimate the posterior distribution of subsurface correlation model parameters that are consistent with the GPR data. Our results indicate that if the underlying assumptions are valid and we possess adequate prior knowledge regarding the water content distribution, in particular its vertical variability, this methodology allows not only for the reliable recovery of lateral correlation model parameters but also for estimates of parameter uncertainties. In the case where prior knowledge regarding the vertical variability of water content is not available, the results show that the methodology still reliably recovers the aspect ratio of the heterogeneity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrical resistivity tomography (ERT) is a well-established method for geophysical characterization and has shown potential for monitoring geologic CO2 sequestration, due to its sensitivity to electrical resistivity contrasts generated by liquid/gas saturation variability. In contrast to deterministic inversion approaches, probabilistic inversion provides the full posterior probability density function of the saturation field and accounts for the uncertainties inherent in the petrophysical parameters relating the resistivity to saturation. In this study, the data are from benchtop ERT experiments conducted during gas injection into a quasi-2D brine-saturated sand chamber with a packing that mimics a simple anticlinal geological reservoir. The saturation fields are estimated by Markov chain Monte Carlo inversion of the measured data and compared to independent saturation measurements from light transmission through the chamber. Different model parameterizations are evaluated in terms of the recovered saturation and petrophysical parameter values. The saturation field is parameterized (1) in Cartesian coordinates, (2) by means of its discrete cosine transform coefficients, and (3) by fixed saturation values in structural elements whose shape and location is assumed known or represented by an arbitrary Gaussian Bell structure. Results show that the estimated saturation fields are in overall agreement with saturations measured by light transmission, but differ strongly in terms of parameter estimates, parameter uncertainties and computational intensity. Discretization in the frequency domain (as in the discrete cosine transform parameterization) provides more accurate models at a lower computational cost compared to spatially discretized (Cartesian) models. A priori knowledge about the expected geologic structures allows for non-discretized model descriptions with markedly reduced degrees of freedom. Constraining the solutions to the known injected gas volume improved estimates of saturation and parameter values of the petrophysical relationship. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bloom-forming and toxin-producing cyanobacteria remain a persistent nuisance across the world. Modelling of cyanobacteria in freshwaters is an important tool for understanding their population dynamics and predicting the location and timing of the bloom events in lakes and rivers. A new deterministic-mathematical model was developed, which simulates the growth and movement of cyanobacterial blooms in river systems. The model focuses on the mathematical description of the bloom formation, vertical migration and lateral transport of colonies within river environments by taking into account the major factors that affect the cyanobacterial bloom formation in rivers including, light, nutrients and temperature. A technique called generalised sensitivity analysis was applied to the model to identify the critical parameter uncertainties in the model and investigates the interaction between the chosen parameters of the model. The result of the analysis suggested that 8 out of 12 parameters were significant in obtaining the observed cyanobacterial behaviour in a simulation. It was found that there was a high degree of correlation between the half-saturation rate constants used in the model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Micro-electromechanical systems (MEMS) are micro scale devices that are able to convert electrical energy into mechanical energy or vice versa. In this paper, the mathematical model of an electronic circuit of a resonant MEMS mass sensor, with time-periodic parametric excitation, was analyzed and controlled by Chebyshev polynomial expansion of the Picard interaction and Lyapunov-Floquet transformation, and by Optimal Linear Feedback Control (OLFC). Both controls consider the union of feedback and feedforward controls. The feedback control obtained by Picard interaction and Lyapunov-Floquet transformation is the first strategy and the optimal control theory the second strategy. Numerical simulations show the efficiency of the two control methods, as well as the sensitivity of each control strategy to parametric errors. Without parametric errors, both control strategies were effective in maintaining the system in the desired orbit. On the other hand, in the presence of parametric errors, the OLFC technique was more robust.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Current nanometer technologies suffer within-die parameter uncertainties, varying workload conditions, aging, and temperature effects that cause a serious reduction on yield and performance. In this scenario, monitoring, calibration, and dynamic adaptation become essential, demanding systems with a collection of multi purpose monitors and exposing the need for light-weight monitoring networks. This paper presents a new monitoring network paradigm able to perform an early prioritization of the information. This is achieved by the introduction of a new hierarchy level, the threshing level. Targeting it, we propose a time-domain signaling scheme over a single-wire that minimizes the network switching activity as well as the routing requirements. To validate our approach, we make a thorough analysis of the architectural trade-offs and expose two complete monitoring systems that suppose an area improvement of 40% and a power reduction of three orders of magnitude compared to previous works.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deregulations and market practices in power industry have brought great challenges to the system planning area. In particular, they introduce a variety of uncertainties to system planning. New techniques are required to cope with such uncertainties. As a promising approach, probabilistic methods are attracting more and more attentions by system planners. In small signal stability analysis, generation control parameters play an important role in determining the stability margin. The objective of this paper is to investigate power system state matrix sensitivity characteristics with respect to system parameter uncertainties with analytical and numerical approaches and to identify those parameters have great impact on system eigenvalues, therefore, the system stability properties. Those identified parameter variations need to be investigated with priority. The results can be used to help Regional Transmission Organizations (RTOs) and Independent System Operators (ISOs) perform planning studies under the open access environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bidirectional DC-DC converters are widely used in different applications such as energy storage systems, Electric Vehicles (EVs), UPS, etc. In particular, future EVs require bidirectional power flow in order to integrate energy storage units into smart grids. These bidirectional power converters provide Grid to Vehicle (V2G)/ Vehicle to Grid (G2V) power flow capability for future EVs. Generally, there are two control loops used for bidirectional DC-DC converters: The inner current loop and The outer loop. The control of DAB converters used in EVs are proved to be challenging due to the wide range of operating conditions and non-linear behavior of the converter. In this thesis, the precise mathematical model of the converter is derived and non-linear control schemes are proposed for the control system of bidirectional DC-DC converters based on the derived model. The proposed inner current control technique is developed based on a novel Geometric-Sequence Control (GSC) approach. The proposed control technique offers significantly improved performance as compared to one for conventional control approaches. The proposed technique utilizes a simple control algorithm which saves on the computational resources. Therefore, it has higher reliability, which is essential in this application. Although, the proposed control technique is based on the mathematical model of the converter, its robustness against parameter uncertainties is proven. Three different control modes for charging the traction batteries in EVs are investigated in this thesis: the voltage mode control, the current mode control, and the power mode control. The outer loop control is determined by each of the three control modes. The structure of the outer control loop provides the current reference for the inner current loop. Comprehensive computer simulations have been conducted in order to evaluate the performance of the proposed control methods. In addition, the proposed control have been verified on a 3.3 kW experimental prototype. Simulation and experimental results show the superior performance of the proposed control techniques over the conventional ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dengue fever is currently the most important arthropod-borne viral disease in Brazil. Mathematical modeling of disease dynamics is a very useful tool for the evaluation of control measures. To be used in decision-making, however, a mathematical model must be carefully parameterized and validated with epidemiological and entomological data. In this work, we developed a simple dengue model to answer three questions: (i) which parameters are worth pursuing in the field in order to develop a dengue transmission model for Brazilian cities; (ii) how vector density spatial heterogeneity influences control efforts; (iii) with a degree of uncertainty, what is the invasion potential of dengue virus type 4 (DEN-4) in Rio de Janeiro city. Our model consists of an expression for the basic reproductive number (R0) that incorporates vector density spatial heterogeneity. To deal with the uncertainty regarding parameter values, we parameterized the model using a priori probability density functions covering a range of plausible values for each parameter. Using the Latin Hypercube Sampling procedure, values for the parameters were generated. We conclude that, even in the presence of vector spatial heterogeneity, the two most important entomological parameters to be estimated in the field are the mortality rate and the extrinsic incubation period. The spatial heterogeneity of the vector population increases the risk of epidemics and makes the control strategies more complex. At last, we conclude that Rio de Janeiro is at risk of a DEN-4 invasion. Finally, we stress the point that epidemiologists, mathematicians, and entomologists need to interact more to find better approaches to the measuring and interpretation of the transmission dynamics of arthropod-borne diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a thorough aggregation of probability and graph theory, Bayesian networks currently enjoy widespread interest as a means for studying factors that affect the coherent evaluation of scientific evidence in forensic science. Paper I of this series of papers intends to contribute to the discussion of Bayesian networks as a framework that is helpful for both illustrating and implementing statistical procedures that are commonly employed for the study of uncertainties (e.g. the estimation of unknown quantities). While the respective statistical procedures are widely described in literature, the primary aim of this paper is to offer an essentially non-technical introduction on how interested readers may use these analytical approaches - with the help of Bayesian networks - for processing their own forensic science data. Attention is mainly drawn to the structure and underlying rationale of a series of basic and context-independent network fragments that users may incorporate as building blocs while constructing larger inference models. As an example of how this may be done, the proposed concepts will be used in a second paper (Part II) for specifying graphical probability networks whose purpose is to assist forensic scientists in the evaluation of scientific evidence encountered in the context of forensic document examination (i.e. results of the analysis of black toners present on printed or copied documents).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many modelling studies examine the impacts of climate change on crop yield, but few explore either the underlying bio-physical processes, or the uncertainty inherent in the parameterisation of crop growth and development. We used a perturbed-parameter crop modelling method together with a regional climate model (PRECIS) driven by the 2071-2100 SRES A2 emissions scenario in order to examine processes and uncertainties in yield simulation. Crop simulations used the groundnut (i.e. peanut; Arachis hypogaea L.) version of the General Large-Area Model for annual crops (GLAM). Two sets of GLAM simulations were carried out: control simulations and fixed-duration simulations, where the impact of mean temperature on crop development rate was removed. Model results were compared to sensitivity tests using two other crop models of differing levels of complexity: CROPGRO, and the groundnut model of Hammer et al. [Hammer, G.L., Sinclair, T.R., Boote, K.J., Wright, G.C., Meinke, H., and Bell, M.J., 1995, A peanut simulation model: I. Model development and testing. Agron. J. 87, 1085-1093]. GLAM simulations were particularly sensitive to two processes. First, elevated vapour pressure deficit (VPD) consistently reduced yield. The same result was seen in some simulations using both other crop models. Second, GLAM crop duration was longer, and yield greater, when the optimal temperature for the rate of development was exceeded. Yield increases were also seen in one other crop model. Overall, the models differed in their response to super-optimal temperatures, and that difference increased with mean temperature; percentage changes in yield between current and future climates were as diverse as -50% and over +30% for the same input data. The first process has been observed in many crop experiments, whilst the second has not. Thus, we conclude that there is a need for: (i) more process-based modelling studies of the impact of VPD on assimilation, and (ii) more experimental studies at super-optimal temperatures. Using the GLAM results, central values and uncertainty ranges were projected for mean 2071-2100 crop yields in India. In the fixed-duration simulations, ensemble mean yields mostly rose by 10-30%. The full ensemble range was greater than this mean change (20-60% over most of India). In the control simulations, yield stimulation by elevated CO2 was more than offset by other processes-principally accelerated crop development rates at elevated, but sub-optimal, mean temperatures. Hence, the quantification of uncertainty can facilitate relatively robust indications of the likely sign of crop yield changes in future climates. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estimates of the response of crops to climate change rarely quantify the uncertainty inherent in the simulation of both climate and crops. We present a crop simulation ensemble for a location in India, perturbing the response of both crop and climate under both baseline (12 720 simulations) and doubled-CO2 (171720 simulations) climates. Some simulations used parameter values representing genotypic adaptation to mean temperature change. Firstly, observed and simulated yields in the baseline climate were compared. Secondly, the response of yield to changes in mean temperature was examined and compared to that found in the literature. No consistent response to temperature change was found across studies. Thirdly, the relative contribution of uncertainty in crop and climate simulation to the total uncertainty in projected yield changes was examined. In simulations without genotypic adaptation, most of the uncertainty came from the climate model parameters. Comparison with the simulations with genotypic adaptation and with a previous study suggested that the relatively low crop parameter uncertainty derives from the observational constraints on the crop parameters used in this study. Fourthly, the simulations were used, together with an observed dataset and a simple analysis of crop cardinal temperatures and thermal time, to estimate the potential for adaptation using existing cultivars. The results suggest that the germplasm for complete adaptation of groundnut cultivation in western India to a doubled-CO2 environment may not exist. In conjunction with analyses of germplasm and local management