925 resultados para Parameter Optimization
Resumo:
In the context of Systems Biology, computer simulations of gene regulatory networks provide a powerful tool to validate hypotheses and to explore possible system behaviors. Nevertheless, modeling a system poses some challenges of its own: especially the step of model calibration is often difficult due to insufficient data. For example when considering developmental systems, mostly qualitative data describing the developmental trajectory is available while common calibration techniques rely on high-resolution quantitative data. Focusing on the calibration of differential equation models for developmental systems, this study investigates different approaches to utilize the available data to overcome these difficulties. More specifically, the fact that developmental processes are hierarchically organized is exploited to increase convergence rates of the calibration process as well as to save computation time. Using a gene regulatory network model for stem cell homeostasis in Arabidopsis thaliana the performance of the different investigated approaches is evaluated, documenting considerable gains provided by the proposed hierarchical approach.
Resumo:
The objective of this work was to optimize the parameter setup for GTAW of aluminum using an AC rectangular wave output and continuous feeding. A series of welds was carried-out in an industrial joint, with variation of the negative and positive current amplitude, the negative and positive duration time, the travel speed and the feeding speed. Another series was carried out to investigate the isolate effect of the negative duration time and travel speed. Bead geometry aspects were assessed, such as reinforcement, penetration, incomplete fusion and joint wall bridging. The results showed that currents at both polarities are remarkably more significant than the respective duration times. It was also shown that there is a straight relationship between welding speed and feeding speed and this relationship must be followed for obtaining sound beads. A very short positive duration time is enough for arc stability achievement and when the negative duration time is longer than 5 ms its effect on geometry appears. The possibility of optimizing the parameter selection, despite the high inter-correlation amongst them, was demonstrate through a computer program. An approach to reduce the number of variables in this process is also presented.
Resumo:
With the advantages and popularity of Permanent Magnet (PM) motors due to their high power density, there is an increasing incentive to use them in variety of applications including electric actuation. These applications have strict noise emission standards. The generation of audible noise and associated vibration modes are characteristics of all electric motors, it is especially problematic in low speed sensorless control rotary actuation applications using high frequency voltage injection technique. This dissertation is aimed at solving the problem of optimizing the sensorless control algorithm for low noise and vibration while achieving at least 12 bit absolute accuracy for speed and position control. The low speed sensorless algorithm is simulated using an improved Phase Variable Model, developed and implemented in a hardware-in-the-loop prototyping environment. Two experimental testbeds were developed and built to test and verify the algorithm in real time.^ A neural network based modeling approach was used to predict the audible noise due to the high frequency injected carrier signal. This model was created based on noise measurements in an especially built chamber. The developed noise model is then integrated into the high frequency based sensorless control scheme so that appropriate tradeoffs and mitigation techniques can be devised. This will improve the position estimation and control performance while keeping the noise below a certain level. Genetic algorithms were used for including the noise optimization parameters into the developed control algorithm.^ A novel wavelet based filtering approach was proposed in this dissertation for the sensorless control algorithm at low speed. This novel filter was capable of extracting the position information at low values of injection voltage where conventional filters fail. This filtering approach can be used in practice to reduce the injected voltage in sensorless control algorithm resulting in significant reduction of noise and vibration.^ Online optimization of sensorless position estimation algorithm was performed to reduce vibration and to improve the position estimation performance. The results obtained are important and represent original contributions that can be helpful in choosing optimal parameters for sensorless control algorithm in many practical applications.^
Resumo:
This study was undertaken to isolate ligninase-producing white-rot fungi for use in the extraction of fibre from pineapple leaf agriwaste. Fifteen fungal strains were isolated from dead tree trunks and leaf litter. Ligninolytic enzymes (lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (Lac)), were produced by solid-state fermentation (SSF) using pineapple leaves as the substrate. Of the isolated strains, the one showing maximum production of ligninolytic enzymes was identified to be Ganoderma lucidum by 18S ribotyping. Single parameter optimization and response surface methodology of different process variables were carried out for enzyme production. Incubation period, agitation, and Tween-80 were identified to be the most significant variables through Plackett-Burman design. These variables were further optimized by Box-Behnken design. The overall maximum yield of ligninolytic enzymes was achieved by experimental analysis under these optimal conditions. Quantitative lignin analysis of pineapple leaves by Klason lignin method showed significant degradation of lignin by Ganoderma lucidum under SSF
Resumo:
Since the beginning, some pattern recognition techniques have faced the problem of high computational burden for dataset learning. Among the most widely used techniques, we may highlight Support Vector Machines (SVM), which have obtained very promising results for data classification. However, this classifier requires an expensive training phase, which is dominated by a parameter optimization that aims to make SVM less prone to errors over the training set. In this paper, we model the problem of finding such parameters as a metaheuristic-based optimization task, which is performed through Harmony Search (HS) and some of its variants. The experimental results have showen the robustness of HS-based approaches for such task in comparison against with an exhaustive (grid) search, and also a Particle Swarm Optimization-based implementation.
Resumo:
We experimentally investigate a multi-parameter optimization of conditions for generation of triangular pulses in normal dispersion fiber. We find that triangular pulses suitable for all optical processing applications can be generated for a wide range of input pulse chirps but that triangular pulse quality and stability is improved with increased input pulse chirp.
Resumo:
An effective aperture approach is used as a tool for analysis and parameter optimization of mostly known ultrasound imaging systems - phased array systems, compounding systems and synthetic aperture imaging systems. Both characteristics of an imaging system, the effective aperture function and the corresponding two-way radiation pattern, provide information about two of the most important parameters of images produced by an ultrasound system - lateral resolution and contrast. Therefore, in the design, optimization of the effective aperture function leads to optimal choice of such parameters of an imaging systems that influence on lateral resolution and contrast of images produced by this imaging system. It is shown that the effective aperture approach can be used for optimization of a sparse synthetic transmit aperture (STA) imaging system. A new two-stage algorithm is proposed for optimization of both the positions of the transmitted elements and the weights of the receive elements. The proposed system employs a 64-element array with only four active elements used during transmit. The numerical results show that Hamming apodization gives the best compromise between the contrast of images and the lateral resolution.
Resumo:
Due to the worldwide increase in demand for biofuels, the area cultivated with sugarcane is expected to increase. For environmental and economic reasons, an increasing proportion of the areas are being harvested without burning, leaving the residues on the soil surface. This periodical input of residues affects soil physical, chemical and biological properties, as well as plant growth and nutrition. Modeling can be a useful tool in the study of the complex interactions between the climate, residue quality, and the biological factors controlling plant growth and residue decomposition. The approach taken in this work was to parameterize the CENTURY model for the sugarcane crop, to simulate the temporal dynamics of aboveground phytomass and litter decomposition, and to validate the model through field experiment data. When studying aboveground growth, burned and unburned harvest systems were compared, as well as the effect of mineral fertilizer and organic residue applications. The simulations were performed with data from experiments with different durations, from 12 months to 60 years, in Goiana, TimbaA(0)ba and Pradpolis, Brazil; Harwood, Mackay and Tully, Australia; and Mount Edgecombe, South Africa. The differentiation of two pools in the litter, with different decomposition rates, was found to be a relevant factor in the simulations made. Originally, the model had a basically unlimited layer of mulch directly available for decomposition, 5,000 g m(-2). Through a parameter optimization process, the thickness of the mulch layer closer to the soil, more vulnerable to decomposition, was set as 110 g m(-2). By changing the layer of mulch at any given time available for decomposition, the sugarcane residues decomposition simulations where close to measured values (R (2) = 0.93), contributing to making the CENTURY model a tool for the study of sugarcane litter decomposition patterns. The CENTURY model accurately simulated aboveground carbon stalk values (R (2) = 0.76), considering burned and unburned harvest systems, plots with and without nitrogen fertilizer and organic amendment applications, in different climates and soil conditions.
Resumo:
Postural control was studied when the subject was kneeling with erect trunk in a quiet posture and compared to that obtained during quiet standing. The analysis was based on the center of pressure motion in the sagittal plane (CPx), both in the time and in the frequency domains. One could assume that postural control during kneeling would be poorer than in standing because it is a less natural posture. This could cause a higher CPx variability. The power spectral density (PSD) of the CPx obtained from the experimental data in the kneeling position (KN) showed a significant decrease at frequencies below 0.3 Hz compared to upright (UP) (P < 0.01), which indicates less sway in KN. Conversely, there was an increase in fast postural oscillations (above 0.7 Hz) during KN compared to UP (P < 0.05). The root mean square (RMS) of the CPx was higher for UP (P < 0.01) while the mean velocity (MV) was higher during KN (P < 0.05). Lack of vision had a significant effect on the PSD and the parameters estimated from the CPx in both positions. We also sought to verify whether the changes in the PSD of the CPx found between the UP and KN positions were exclusively due to biomechanical factors (e.g., lowered center of gravity), or also reflected changes in the neural processes involved in the control of balance. To reach this goal, besides the experimental approach, a simple feedback model (a PID neural system, with added neural noise and controlling an inverted pendulum) was used to simulate postural sway in both conditions (in KN the pendulum was shortened, the mass and the moment of inertia were decreased). A parameter optimization method was used to fit the CPx power spectrum given by the model to that obtained experimentally. The results indicated that the changed anthropometric parameters in KN would indeed cause a large decrease in the power spectrum at low frequencies. However, the model fitting also showed that there were considerable changes also in the neural subsystem when the subject went from standing to kneeling. There was a lowering of the proportional and derivative gains and an increase in the neural noise power. Additional increases in the neural noise power were found also when the subject closed his eyes.
Resumo:
The use of a fitted parameter watershed model to address water quantity and quality management issues requires that it be calibrated under a wide range of hydrologic conditions. However, rarely does model calibration result in a unique parameter set. Parameter nonuniqueness can lead to predictive nonuniqueness. The extent of model predictive uncertainty should be investigated if management decisions are to be based on model projections. Using models built for four neighboring watersheds in the Neuse River Basin of North Carolina, the application of the automated parameter optimization software PEST in conjunction with the Hydrologic Simulation Program Fortran (HSPF) is demonstrated. Parameter nonuniqueness is illustrated, and a method is presented for calculating many different sets of parameters, all of which acceptably calibrate a watershed model. A regularization methodology is discussed in which models for similar watersheds can be calibrated simultaneously. Using this method, parameter differences between watershed models can be minimized while maintaining fit between model outputs and field observations. In recognition of the fact that parameter nonuniqueness and predictive uncertainty are inherent to the modeling process, PEST's nonlinear predictive analysis functionality is then used to explore the extent of model predictive uncertainty.
Resumo:
O objectivo deste trabalho consiste em avaliar os benefícios das Self Organizing Networks (SON), no que concerne ao planeamento e optimização de redes Long Term Evolution (LTE), não só através do seu estudo, como também através do desenvolvimento e teste de algoritmos, que permitem avaliar o funcionamento de algumas das suas principais funções. O estudo efectuado sobre as SON permitiu identificar um conjunto de funções, tais como a atribuição automática de Physical Cell Id (PCI), o Automatic Neighbour Relation (ANR) e a optimização automática de parâmetros de handover, que permitem facilitar ou mesmo substituir algumas das tarefas mais comuns em planeamento e optimização de redes móveis celulares, em particular, redes LTE. Recorrendo a um simulador LTE destinado à investigação académica, em código aberto e desenvolvido em Matlab®, foi desenvolvido um conjunto de algoritmos que permitiram a implementação das funções em questão. Para além das funções implementadas, foram também introduzidas alterações que conferem a este simulador a capacidade de representar e simular redes reais, permitindo uma análise mais coerente dos algoritmos desenvolvidos. Os resultados obtidos, para além de evidenciarem claramente o benefício dos algoritmos desenvolvidos, foram ainda comparados com os obtidos pela ferramenta profissional de planeamento e optimização Atoll®, tendo-se verificado a franca proximidade de desempenho em algumas das funções. Finalmente, foi desenvolvida uma interface gráfica que permite o desenho, configuração e simulação de cenários, bem como a análise de resultados.
Resumo:
Hidden Markov models (HMMs) are probabilistic models that are well adapted to many tasks in bioinformatics, for example, for predicting the occurrence of specific motifs in biological sequences. MAMOT is a command-line program for Unix-like operating systems, including MacOS X, that we developed to allow scientists to apply HMMs more easily in their research. One can define the architecture and initial parameters of the model in a text file and then use MAMOT for parameter optimization on example data, decoding (like predicting motif occurrence in sequences) and the production of stochastic sequences generated according to the probabilistic model. Two examples for which models are provided are coiled-coil domains in protein sequences and protein binding sites in DNA. A wealth of useful features include the use of pseudocounts, state tying and fixing of selected parameters in learning, and the inclusion of prior probabilities in decoding. AVAILABILITY: MAMOT is implemented in C++, and is distributed under the GNU General Public Licence (GPL). The software, documentation, and example model files can be found at http://bcf.isb-sib.ch/mamot
Resumo:
Aim: When planning SIRT using 90Y microspheres, the partition model is used to refine the activity calculated by the body surface area (BSA) method to potentially improve the safety and efficacy of treatment. For this partition model dosimetry, accurate determination of mean tumor-to-normal liver ratio (TNR) is critical since it directly impacts absorbed dose estimates. This work aimed at developing and assessing a reliable methodology for the calculation of 99mTc-MAA SPECT/CT-derived TNR ratios based on phantom studies. Materials and methods: IQ NEMA (6 hot spheres) and Kyoto liver phantoms with different hot/background activity concentration ratios were imaged on a SPECT/CT (GE Infinia Hawkeye 4). For each reconstruction with the IQ phantom, TNR quantification was assessed in terms of relative recovery coefficients (RC) and image noise was evaluated in terms of coefficient of variation (COV) in the filled background. RCs were compared using OSEM with Hann, Butterworth and Gaussian filters, as well as FBP reconstruction algorithms. Regarding OSEM, RCs were assessed by varying different parameters independently, such as the number of iterations (i) and subsets (s) and the cut-off frequency of the filter (fc). The influence of the attenuation and diffusion corrections was also investigated. Furthermore, both 2D-ROIs and 3D-VOIs contouring were compared. For this purpose, dedicated Matlab© routines were developed in-house for automatic 2D-ROI/3D-VOI determination to reduce intra-user and intra-slice variability. Best reconstruction parameters and RCs obtained with the IQ phantom were used to recover corrected TNR in case of the Kyoto phantom for arbitrary hot-lesion size. In addition, we computed TNR volume histograms to better assess uptake heterogeneityResults: The highest RCs were obtained with OSEM (i=2, s=10) coupled with the Butterworth filter (fc=0.8). Indeed, we observed a global 20% RC improvement over other OSEM settings and a 50% increase as compared to the best FBP reconstruction. In any case, both attenuation and diffusion corrections must be applied, thus improving RC while preserving good image noise (COV<10%). Both 2D-ROI and 3D-VOI analysis lead to similar results. Nevertheless, we recommend using 3D-VOI since tumor uptake regions are intrinsically 3D. RC-corrected TNR values lie within 17% around the true value, substantially improving the evaluation of small volume (<15 mL) regions. Conclusions: This study reports the multi-parameter optimization of 99mTc MAA SPECT/CT images reconstruction in planning 90Y dosimetry for SIRT. In phantoms, accurate quantification of TNR was obtained using OSEM coupled with Butterworth and RC correction.
Resumo:
A method for determining soil hydraulic properties of a weathered tropical soil (Oxisol) using a medium-sized column with undisturbed soil is presented. The method was used to determine fitting parameters of the water retention curve and hydraulic conductivity functions of a soil column in support of a pesticide leaching study. The soil column was extracted from a continuously-used research plot in Central Oahu (Hawaii, USA) and its internal structure was examined by computed tomography. The experiment was based on tension infiltration into the soil column with free outflow at the lower end. Water flow through the soil core was mathematically modeled using a computer code that numerically solves the one-dimensional Richards equation. Measured soil hydraulic parameters were used for direct simulation, and the retention and soil hydraulic parameters were estimated by inverse modeling. The inverse modeling produced very good agreement between model outputs and measured flux and pressure head data for the relatively homogeneous column. The moisture content at a given pressure from the retention curve measured directly in small soil samples was lower than that obtained through parameter optimization based on experiments using a medium-sized undisturbed soil column.