998 resultados para Parallel projection


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Application of a parallel-projection inversion technique to z-scan spectra of multiply charged xenon and krypton ions, obtained by non-resonant field ionization of neutral targets, has for the first time permitted the direct observation of intensity-dependent ionization probabilities. These ionization efficiency curves have highlighted the presence of structure in the tunnelling regime, previously unobserved under full-volume techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Of the many ways in which depth can be intimated in drawings, perspective has undoubtedly been one of the most frequently examined. But there is also an equally rich history associated with other forms of pictorial representation. Alternatives to perspective became particularly significant in the early twentieth century as artists and architects, intent on throwing off the conventions of their predecessors, looked to new ways of depicting depth. In architecture, this tendency was exemplified by Modernism’s preference for parallel projection – most notably axonometric and oblique. The use of these techniques gave architects the opportunity to convey a new and uniquely modern form of spatial expression. At once shallow and yet expansive, a key feature of these drawings was their ability to support perceptual ambiguity. This paper will consider the philosophy and science of vision, out of which these preoccupations emerged. In this context, the nineteenth-century discovery of stereopsis and the invention of the stereoscope will be used to illustrate the way in which attempts to test the limits of spatial perception led to an opening up of visual experience; and provided a definition of visual experience that could encompass the representational ambiguities later exploited by the early twentieth-century avant-garde.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research presents a methodology for prediction of building shadows cast on urban roads existing on high-resolution aerial imagery. Shadow elements can be used in the modeling of contextual information, whose use has become more and more common in image analysis complex processes. The proposed methodology consists in three sequential steps. First, the building roof contours are manually extracted from an intensity image generated by the transformation of a digital elevation model (DEM) obtained from airborne laser scanning data. In similarly, the roadside contours are extracted, now from the radiometric information of the laser scanning data. Second, the roof contour polygons are projected onto the adjacent roads by using the parallel projection straight lines, whose directions are computed from the solar ephemeris, which depends on the aerial image acquisition time. Finally, parts of shadow polygons that are free from building perspective obstructions are determined, given rise to new shadow polygons. The results obtained in the experimental evaluation of the methodology showed that the method works properly, since it allowed the prediction of shadow in high-resolution imagery with high accuracy and reliability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new equivalent map projection called the parallels plane projection is proposed in this paper. The transverse axis of the parallels plane projection is the expansion of the equator and its vertical axis equals half the length of the central meridian. On the parallels plane projection, meridians are projected as sine curves and parallels are a series of straight, parallel lines. No distortion of length occurs along the central meridian or on any parallels of this projection. Angular distortion and the proportion of length along meridians (except the central meridian) introduced by the projection transformation increase with increasing longitude and latitude. A potential application of the parallels plane projection is that it can provide an efficient projection transformation for global discrete grid systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We developed a direct partitioning method to construct a seamless discrete global grid system (DGGS) with any resolution based on a two-dimensional projected plane and the earth ellipsoid. This DGGS is composed of congruent square grids over the projected plane and irregular ellipsoidal quadrilaterals on the ellipsoidal surface. A new equal area projection named the parallels plane (PP) projection derived from the expansion of the central meridian and parallels has been employed to perform the transformation between the planar squares and the corresponding ellipsoidal grids. The horizontal sides of the grids are parts of the parallel circles and the vertical sides are complex ellipsoidal curves, which can be obtained by the inverse expression of the PP projection. The partition strategies, transformation equations, geometric characteristics and distortions for this DGGS have been discussed. Our analysis proves that the DGGS is area-preserving while length distortions only occur on the vertical sides off the central meridian. Angular and length distortions positively correlate to the increase in latitudes and the spanning of longitudes away from a chosen central meridian. This direct partition only generates a small number of broken grids that can be treated individually.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main purpose of robot calibration is the correction of the possible errors in the robot parameters. This paper presents a method for a kinematic calibration of a parallel robot that is equipped with one camera in hand. In order to preserve the mechanical configuration of the robot, the camera is utilized to acquire incremental positions of the end effector from a spherical object that is fixed in the word reference frame. The positions of the end effector are related to incremental positions of resolvers of the motors of the robot, and a kinematic model of the robot is used to find a new group of parameters which minimizes errors in the kinematic equations. Additionally, properties of the spherical object and intrinsic camera parameters are utilized to model the projection of the object in the image and improving spatial measurements. Finally, the robotic system is designed to carry out tracking tasks and the calibration of the robot is validated by means of integrating the errors of the visual controller.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel method for the calibration of a parallel robot, which allows a more accurate configuration instead of a configuration based on nominal parameters. It is used, as the main sensor with one camera installed in the robot hand that determines the relative position of the robot with respect to a spherical object fixed in the working area of the robot. The positions of the end effector are related to the incremental positions of resolvers of the robot motors. A kinematic model of the robot is used to find a new group of parameters, which minimizes errors in the kinematic equations. Additionally, properties of the spherical object and intrinsic camera parameters are utilized to model the projection of the object in the image and thereby improve spatial measurements. Finally, several working tests, static and tracking tests are executed in order to verify how the robotic system behaviour improves by using calibrated parameters against nominal parameters. In order to emphasize that, this proposed new method uses neither external nor expensive sensor. That is why new robots are useful in teaching and research activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a flexible visual data mining framework which combines advanced projection algorithms from the machine learning domain and visual techniques developed in the information visualization domain. The advantage of such an interface is that the user is directly involved in the data mining process. We integrate principled projection algorithms, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates and billboarding, to provide a visual data mining framework. Results on a real-life chemoinformatics dataset using GTM are promising and have been analytically compared with the results from the traditional projection methods. It is also shown that the HGTM algorithm provides additional value for large datasets. The computational complexity of these algorithms is discussed to demonstrate their suitability for the visual data mining framework. Copyright 2006 ACM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study extends a previous research concerning intervertebral motion registration by means of 2D dynamic fluoroscopy to obtain a more comprehensive 3D description of vertebral kinematics. The problem of estimating the 3D rigid pose of a CT volume of a vertebra from its 2D X-ray fluoroscopy projection is addressed. 2D-3D registration is obtained maximising a measure of similarity between Digitally Reconstructed Radiographs (obtained from the CT volume) and real fluoroscopic projection. X-ray energy correction was performed. To assess the method a calibration model was realised a sheep dry vertebra was rigidly fixed to a frame of reference including metallic markers. Accurate measurement of 3D orientation was obtained via single-camera calibration of the markers and held as true 3D vertebra position; then, vertebra 3D pose was estimated and results compared. Error analysis revealed accuracy of the order of 0.1 degree for the rotation angles of about 1mm for displacements parallel to the fluoroscopic plane, and of order of 10mm for the orthogonal displacement. © 2010 P. Bifulco et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the exponential increasing demands and uses of GIS data visualization system, such as urban planning, environment and climate change monitoring, weather simulation, hydrographic gauge and so forth, the geospatial vector and raster data visualization research, application and technology has become prevalent. However, we observe that current web GIS techniques are merely suitable for static vector and raster data where no dynamic overlaying layers. While it is desirable to enable visual explorations of large-scale dynamic vector and raster geospatial data in a web environment, improving the performance between backend datasets and the vector and raster applications remains a challenging technical issue. This dissertation is to implement these challenging and unimplemented areas: how to provide a large-scale dynamic vector and raster data visualization service with dynamic overlaying layers accessible from various client devices through a standard web browser, and how to make the large-scale dynamic vector and raster data visualization service as rapid as the static one. To accomplish these, a large-scale dynamic vector and raster data visualization geographic information system based on parallel map tiling and a comprehensive performance improvement solution are proposed, designed and implemented. They include: the quadtree-based indexing and parallel map tiling, the Legend String, the vector data visualization with dynamic layers overlaying, the vector data time series visualization, the algorithm of vector data rendering, the algorithm of raster data re-projection, the algorithm for elimination of superfluous level of detail, the algorithm for vector data gridding and re-grouping and the cluster servers side vector and raster data caching.