853 resultados para Parallel execution
Resumo:
Since the early days of logic programming, researchers in the field realized the potential for exploitation of parallelism present in the execution of logic programs. Their high-level nature, the presence of nondeterminism, and their referential transparency, among other characteristics, make logic programs interesting candidates for obtaining speedups through parallel execution. At the same time, the fact that the typical applications of logic programming frequently involve irregular computations, make heavy use of dynamic data structures with logical variables, and involve search and speculation, makes the techniques used in the corresponding parallelizing compilers and run-time systems potentially interesting even outside the field. The objective of this article is to provide a comprehensive survey of the issues arising in parallel execution of logic programming languages along with the most relevant approaches explored to date in the field. Focus is mostly given to the challenges emerging from the parallel execution of Prolog programs. The article describes the major techniques used for shared memory implementation of Or-parallelism, And-parallelism, and combinations of the two. We also explore some related issues, such as memory management, compile-time analysis, and execution visualization.
Resumo:
Abstract is not available.
Resumo:
This paper addresses the design of visual paradigms for observing the parallel execution of logic programs. First, an intuitive method is proposed for arriving at the design of a paradigm and its implementation as a tool for a given model of parallelism. This method is based on stepwise reñnement starting from the deñnition of basic notions such as events and observables and some precedence relationships among events which hold for the given model of parallelism. The method is then applied to several types of parallel execution models for logic programs (Orparallelism, Determinate Dependent And parallelism, Restricted and-parallelism) for which visualization paradigms are designed. Finally, VisAndOr, a tool which implements all of these paradigms is presented, together with a discussion of its usefulness through examples.
Resumo:
The interactions among three important issues involved in the implementation of logic programs in parallel (goal scheduling, precedence, and memory management) are discussed. A simplified, parallel memory management model and an efficient, load-balancing goal scheduling strategy are presented. It is shown how, for systems which support "don't know" non-determinism, special care has to be taken during goal scheduling if the space recovery characteristics of sequential systems are to be preserved. A solution based on selecting only "newer" goals for execution is described, and an algorithm is proposed for efficiently maintaining and determining precedence relationships and variable ages across parallel goals. It is argued that the proposed schemes and algorithms make it possible to extend the storage performance of sequential systems to parallel execution without the considerable overhead previously associated with it. The results are applicable to a wide class of parallel and coroutining systems, and they represent an efficient alternative to "all heap" or "spaghetti stack" allocation models.
Resumo:
Although the sequential execution speed of logic programs has been greatly improved by the concepts introduced in the Warren Abstract Machine (WAM), parallel execution represents the only way to increase this speed beyond the natural limits of sequential systems. However, most proposed parallel logic programming execution models lack the performance optimizations and storage efficiency of sequential systems. This paper presents a parallel abstract machine which is an extension of the WAM and is thus capable of supporting ANDParallelism without giving up the optimizations present in sequential implementations. A suitable instruction set, which can be used as a target by a variety of logic programming languages, is also included. Special instructions are provided to support a generalized version of "Restricted AND-Parallelism" (RAP), a technique which reduces the overhead traditionally associated with the run-time management of variable binding conflicts to a series of simple run-time checks, which select one out of a series of compiled execution graphs.
Resumo:
We propose a computational methodology -"B-LOG"-, which offers the potential for an effective implementation of Logic Programming in a parallel computer. We also propose a weighting scheme to guide the search process through the graph and we apply the concepts of parallel "branch and bound" algorithms in order to perform a "best-first" search using an information theoretic bound. The concept of "session" is used to speed up the search process in a succession of similar queries. Within a session, we strongly modify the bounds in a local database, while bounds kept in a global database are weakly modified to provide a better initial condition for other sessions. We also propose an implementation scheme based on a database machine using "semantic paging", and the "B-LOG processor" based on a scoreboard driven controller.
Resumo:
This article presents in an informal way some early results on the design of a series of paradigms for visualization of the parallel execution of logic programs. The results presented here refer to the visualization of or-parallelism, as in MUSE and Aurora, deterministic dependent and-parallelism, as in Andorra-I, and independent and-parallelism as in &-Prolog. A tool has been implemented for this purpose and has been interfaced with these systems. Results are presented showing the visualization of executions from these systems and the usefulness of the resulting tool is briefly discussed.
Resumo:
This article presents in an informal way some early results on the design of a series of paradigms for visualization of the parallel execution of logic programs. The results presented here refer to the visualization of or-parallelism, as in MUSE and Aurora, deterministic dependent and-parallelism, as in Andorra-I, and independent and-parallelism as in &-Prolog. A tool has been implemented for this purpose and has been interfaced with these systems. Results are presented showing the visualization of executions from these systems and the usefulness of the resulting tool is briefly discussed.
Resumo:
The term "Logic Programming" refers to a variety of computer languages and execution models which are based on the traditional concept of Symbolic Logic. The expressive power of these languages offers promise to be of great assistance in facing the programming challenges of present and future symbolic processing applications in Artificial Intelligence, Knowledge-based systems, and many other areas of computing. The sequential execution speed of logic programs has been greatly improved since the advent of the first interpreters. However, higher inference speeds are still required in order to meet the demands of applications such as those contemplated for next generation computer systems. The execution of logic programs in parallel is currently considered a promising strategy for attaining such inference speeds. Logic Programming in turn appears as a suitable programming paradigm for parallel architectures because of the many opportunities for parallel execution present in the implementation of logic programs. This dissertation presents an efficient parallel execution model for logic programs. The model is described from the source language level down to an "Abstract Machine" level suitable for direct implementation on existing parallel systems or for the design of special purpose parallel architectures. Few assumptions are made at the source language level and therefore the techniques developed and the general Abstract Machine design are applicable to a variety of logic (and also functional) languages. These techniques offer efficient solutions to several areas of parallel Logic Programming implementation previously considered problematic or a source of considerable overhead, such as the detection and handling of variable binding conflicts in AND-Parallelism, the specification of control and management of the execution tree, the treatment of distributed backtracking, and goal scheduling and memory management issues, etc. A parallel Abstract Machine design is offered, specifying data areas, operation, and a suitable instruction set. This design is based on extending to a parallel environment the techniques introduced by the Warren Abstract Machine, which have already made very fast and space efficient sequential systems a reality. Therefore, the model herein presented is capable of retaining sequential execution speed similar to that of high performance sequential systems, while extracting additional gains in speed by efficiently implementing parallel execution. These claims are supported by simulations of the Abstract Machine on sample programs.
Resumo:
Embedded real-time applications increasingly present high computation requirements, which need to be completed within specific deadlines, but that present highly variable patterns, depending on the set of data available in a determined instant. The current trend to provide parallel processing in the embedded domain allows providing higher processing power; however, it does not address the variability in the processing pattern. Dimensioning each device for its worst-case scenario implies lower average utilization, and increased available, but unusable, processing in the overall system. A solution for this problem is to extend the parallel execution of the applications, allowing networked nodes to distribute the workload, on peak situations, to neighbour nodes. In this context, this report proposes a framework to develop parallel and distributed real-time embedded applications, transparently using OpenMP and Message Passing Interface (MPI), within a programming model based on OpenMP. The technical report also devises an integrated timing model, which enables the structured reasoning on the timing behaviour of these hybrid architectures.
Resumo:
Workflows have been successfully applied to express the decomposition of complex scientific applications. However the existing tools still lack adequate support to important aspects namely, decoupling the enactment engine from tasks specification, decentralizing the control of workflow activities allowing their tasks to run in distributed infrastructures, and supporting dynamic workflow reconfigurations. We present the AWARD (Autonomic Workflow Activities Reconfigurable and Dynamic) model of computation, based on Process Networks, where the workflow activities (AWA) are autonomic processes with independent control that can run in parallel on distributed infrastructures. Each AWA executes a task developed as a Java class with a generic interface allowing end-users to code their applications without low-level details. The data-driven coordination of AWA interactions is based on a shared tuple space that also enables dynamic workflow reconfiguration. For evaluation we describe experimental results of AWARD workflow executions in several application scenarios, mapped to the Amazon (Elastic Computing EC2) Cloud.
Resumo:
6th Real-Time Scheduling Open Problems Seminar (RTSOPS 2015), Lund, Sweden.
Resumo:
Article in Press, Corrected Proof
Resumo:
Face à estagnação da tecnologia uniprocessador registada na passada década, aos principais fabricantes de microprocessadores encontraram na tecnologia multi-core a resposta `as crescentes necessidades de processamento do mercado. Durante anos, os desenvolvedores de software viram as suas aplicações acompanhar os ganhos de performance conferidos por cada nova geração de processadores sequenciais, mas `a medida que a capacidade de processamento escala em função do número de processadores, a computação sequencial tem de ser decomposta em várias partes concorrentes que possam executar em paralelo, para que possam utilizar as unidades de processamento adicionais e completar mais rapidamente. A programação paralela implica um paradigma completamente distinto da programação sequencial. Ao contrário dos computadores sequenciais tipificados no modelo de Von Neumann, a heterogeneidade de arquiteturas paralelas requer modelos de programação paralela que abstraiam os programadores dos detalhes da arquitectura e simplifiquem o desenvolvimento de aplicações concorrentes. Os modelos de programação paralela mais populares incitam os programadores a identificar instruções concorrentes na sua lógica de programação, e a especificá-las sob a forma de tarefas que possam ser atribuídas a processadores distintos para executarem em simultâneo. Estas tarefas são tipicamente lançadas durante a execução, e atribuídas aos processadores pelo motor de execução subjacente. Como os requisitos de processamento costumam ser variáveis, e não são conhecidos a priori, o mapeamento de tarefas para processadores tem de ser determinado dinamicamente, em resposta a alterações imprevisíveis dos requisitos de execução. `A medida que o volume da computação cresce, torna-se cada vez menos viável garantir as suas restrições temporais em plataformas uniprocessador. Enquanto os sistemas de tempo real se começam a adaptar ao paradigma de computação paralela, há uma crescente aposta em integrar execuções de tempo real com aplicações interativas no mesmo hardware, num mundo em que a tecnologia se torna cada vez mais pequena, leve, ubíqua, e portável. Esta integração requer soluções de escalonamento que simultaneamente garantam os requisitos temporais das tarefas de tempo real e mantenham um nível aceitável de QoS para as restantes execuções. Para tal, torna-se imperativo que as aplicações de tempo real paralelizem, de forma a minimizar os seus tempos de resposta e maximizar a utilização dos recursos de processamento. Isto introduz uma nova dimensão ao problema do escalonamento, que tem de responder de forma correcta a novos requisitos de execução imprevisíveis e rapidamente conjeturar o mapeamento de tarefas que melhor beneficie os critérios de performance do sistema. A técnica de escalonamento baseado em servidores permite reservar uma fração da capacidade de processamento para a execução de tarefas de tempo real, e assegurar que os efeitos de latência na sua execução não afectam as reservas estipuladas para outras execuções. No caso de tarefas escalonadas pelo tempo de execução máximo, ou tarefas com tempos de execução variáveis, torna-se provável que a largura de banda estipulada não seja consumida por completo. Para melhorar a utilização do sistema, os algoritmos de partilha de largura de banda (capacity-sharing) doam a capacidade não utilizada para a execução de outras tarefas, mantendo as garantias de isolamento entre servidores. Com eficiência comprovada em termos de espaço, tempo, e comunicação, o mecanismo de work-stealing tem vindo a ganhar popularidade como metodologia para o escalonamento de tarefas com paralelismo dinâmico e irregular. O algoritmo p-CSWS combina escalonamento baseado em servidores com capacity-sharing e work-stealing para cobrir as necessidades de escalonamento dos sistemas abertos de tempo real. Enquanto o escalonamento em servidores permite partilhar os recursos de processamento sem interferências a nível dos atrasos, uma nova política de work-stealing que opera sobre o mecanismo de capacity-sharing aplica uma exploração de paralelismo que melhora os tempos de resposta das aplicações e melhora a utilização do sistema. Esta tese propõe uma implementação do algoritmo p-CSWS para o Linux. Em concordância com a estrutura modular do escalonador do Linux, ´e definida uma nova classe de escalonamento que visa avaliar a aplicabilidade da heurística p-CSWS em circunstâncias reais. Ultrapassados os obstáculos intrínsecos `a programação da kernel do Linux, os extensos testes experimentais provam que o p-CSWS ´e mais do que um conceito teórico atrativo, e que a exploração heurística de paralelismo proposta pelo algoritmo beneficia os tempos de resposta das aplicações de tempo real, bem como a performance e eficiência da plataforma multiprocessador.
Resumo:
This work was supported by FCT (Fundação para a Ciência e Tecnologia) within Project Scope (UID/CEC/00319/2013), by LIP (Laboratório de Instrumentação e Física Experimental de Partículas) and by Project Search-ON2 (NORTE-07-0162- FEDER-000086), co-funded by the North Portugal Regional Operational Programme (ON.2 - O Novo Norte), under the National Strategic Reference Framework, through the European Regional Development Fund.