67 resultados para Paragenesis
Resumo:
The Sascha-Pelligrini low-sulphidation epithermal system is located on the western edge of the Deseado Massif, Santa Cruz Province, Argentina. Outcrop sampling has returned values of up to 160g/t gold and 796g/t silver, with Mirasol Resources and Coeur D.Alene Mines currently exploring the property. Detailed mapping of the volcanic stratigraphy has defined three units that comprise the middle Jurassic Chon Aike Formation and two units that comprise the upper Jurassic La Matilde Formation. The Chon Aike Formation consists of rhyodacite ignimbrites and tuffs, with the La Matilde Formation including rhyolite ash and lithic tuffs. The volcanic sequence is intruded by a large flow-banded rhyolite dome, with small, spatially restricted granodiorite dykes and sills cropping out across the study area. ASTER multispectral mineral mapping, combined with PIMA (Portable Infrared Mineral Analyser) and XRD (X-ray diffraction) analysis defines an alteration pattern that zones from laumontite-montmorillonite, to illite-pyritechlorite, followed by a quartz-illite-smectite-pyrite-adularia vein selvage. Supergene kaolinite and steam-heated acid-sulphate kaolinite-alunite-opal alteration horizons crop out along the Sascha Vein trend and Pelligrini respectively. Paragenetically, epithermal veining varies from chalcedonic to saccharoidal with minor bladed textures, colloform/crustiform-banded with visible electrum and acanthite, crustiform-banded grey chalcedonic to jasperoidal with fine pyrite, and crystalline comb quartz. Geothermometry of mineralised veins constrains formation temperatures from 174.8 to 205.1¡ÆC and correlates with the stability field for the interstratified illite-smectite vein selvage. Vein morphology, mineralogy and associated alteration are controlled by host rock rheology, permeability, and depth of the palaeo-water table. Mineralisation within ginguro banded veins resulted from fluctuating fluid pH associated with selenide-rich magmatic pulses, pressure release boiling and wall-rock silicate buffering. The study of the Sascha-Pelligrini epithermal system will form the basis for a deposit-specific model helping to clarify the current understanding of epithermal deposits, and may serve as a template for exploration of similar epithermal deposits throughout Santa Cruz.
Resumo:
The secondary phosphate mineral sigloite Fe3+Al2(PO4)2(OH)3·7H2O is the exception to the rule that phosphate mineral paragenesis is related to the final phase of hydrothermal mineralization at low temperatures. Sigloite was formed as an oxidation pseudomorph after paravauxite, during the last supergene paragenetic stage. We have studied the secondary phosphate mineral sigloite Fe3+Al2(PO4)2(OH)3·7H2O using vibrational spectroscopic techniques. Because the mineral is a phosphate mineral, it is readily studied by spectroscopic techniques as the phosphate and hydrogen phosphate units are readily measured. Indeed, sigloite shows the presence of both phosphate and hydrogen phosphate units in its structure. Raman bands at 1009 cm−1 with shoulders at 993 and 1039 cm−1 are assigned to stretching vibrations of and units. The Raman band at 993 cm−1 is assigned to the ν1 symmetric stretching mode of the POH units, whereas the Raman band at 1009 cm−1 is assigned to the ν1 symmetric stretching mode. Raman bands observed at 506, 528, 571, 596, 619 and 659 cm−1 are attributed to the ν4 out of plane bending modes of the PO4 and H2PO4 units. The Raman bands at 2988, 3118 and 3357 cm−1 are assigned to water stretching vibration. The series of bands at 3422, 3449, 3493, 3552 and 3615 cm−1 are assigned to the OH stretching vibrations of the hydroxyl units. The observation of multiple bands gives credence to the non-equivalence of the OH units in the sigloite structure.
Resumo:
The acid weathering of pyrite-bearing Pennsylvanian clastic sedimentary rocks in southeastern Nebraska locally produces the secondary sulfate minerals alunogen, copiapite, epsomite, felsobanyaite/basaluminite, gypsum, halotrichite, jarosite, rozenite, and slavikite. Of these mineral occurrences, four are first-time discoveries in the state or the surrounding region. Slavikite (NaMg2Fe5 (S04)7 (OH) 6• 33H20), which has been reported only once before in North America and from a handful of sites in Europe and South America, was found in abundance at an outcrop at Brownville, NE. The pH values in 1:1 solutions of deionized water of the studied minerals, excluding epsomite, range from 1.94 to 4.82. Therefore, segregations of secondary minerals in themselves are significant microenvironmental reservoirs of acid that can be mobilized during precipitation events. Because of its role in liberating and concentrating ions such as Al3+, Fe2+, Fe3+, Mg3+, and SO42-, acid rock weathering should be considered in local to regional assessments of surface-water and groundwater chemistry. Observations also suggest that rock weathering by the growth of sulfate salts is a potential factor in local hillslope development, one that has not previously been considered in the study area.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographical references.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
This study concerns the Dublin Gulch intrusion-related gold system, Yukon Territory, Canada. Located 85 km, north northwest of the town of Mayo, YT, the property hosts a 3.3 M oz Au deposit associated with a mid-Cretaceous pluton. A detailed, 8 stage, hydrothermal paragenesis has been constructed for the deposit. At least two discrete fluids are responsible for sulfide mineralization at Dublin Gulch. The latter of the two hydrothermal fluids is responsible for the majority of Au endowment on the property. Geochemical signatures of mineralization support this finding, displaying distinct populations of arsenopyrite compositions and sulfur isotopes for each fluid. Lead isotopes from sulfosalts associated with the second fluid suggest hydrothermal scavenging from country rocks. Geochronology and petrogenetic studies show that a short lived intrusive event c. 93-94 Ma took place at Dublin Gulch and that the main Au mineralising fluid may be linked to a yet unseen intrusion at depth.
Resumo:
A series of molybdate bearing minerals including wulfenite, powellite, lindgrenite and iriginite have been analysed by Raman microscopy. These minerals are closely related and often have related paragenesis. Raman microscopy enables the selection of individual crystals of these minerals for spectroscopic analysis even though several of the minerals can be found in the same matrix because of the paragenetic relationships between the minerals. The molybdenum bearing minerals lindgrenite, iriginite and koechlinite were studied by scanning electron microscopy and compositionally analysed by EDX methods using an electron probe before Raman spectroscopic analyses. The Raman spectra are assigned according to factor group analysis and related to the structure of the minerals. These minerals have characteristically different Raman spectra.
Resumo:
The O18/O16 ratios of coexisting minerals from a number of regionally metamorphosed rocks have been measured, using a bromine pentafluoride extraction-technique. Listed in order of their increasing tendency to concentrate O18, the minerals analyzed are magnetite, ilmenite, chlorite, biotite, garnet, hornblende, kyanite, muscovite, feldspar, and quartz. The only anomalous sequence detected occurs in a xenolith of schist, in which quartz, muscovite, biotite, and ilmenite, but not garnet, have undergone isotopic exchange with surrounding trondjemite.
With few exceptions, quartz-magnetite and quartz-ilmenite fractionations decrease with increasing metamorphic grade determined by mineral paragenesis and spatial distribution. This consistency does not apply to quartz-magnetite and quartz-ilmenite fractionations obtained from rocks in which petrographic evidence of retrogradation is present.
Whereas measured isotopic fractionations among quartz, garnet, ilmenite, and magnetite are approximately related to metamorphic grade, fractionations between these minerals and biotite or muscovite show poor correlation with grade. Variations in muscovite-biotite fractionations are relatively small. These observations are interpreted to mean that muscovite and biotite are affected by retrograde re-equilibration to a greater extent than the anhydrous minerals analyzed.
Measured quartz-ilmenite fractionations range from 12 permil in the biotite zone of central Vermont to 6.5 permil in the sillimanite-orthoclase zone of southeastern Connecticut. Analyses of natural assemblages from the kyanite and sillimanite zones suggest that equilibrium quartz-ilmenite fractionations are approximately 8 percent smaller than corresponding quartz-magnetite fractionations. Employing the quartz-magnetite geothermometer calibrated by O'Neil and Clayton (1964), a temperature of 560°C was obtained for kyanite-bearing schists from Addison County, Vermont. Extending the calibration to quartz-ilmenite fractionations, a temperature of 600°C was obtained for kyanite-schists from Shoshone County, Idaho. At these temperatures kyanite is stable only at pressures exceeding 11 kbars (Bell, 1963), corresponding to lithostatic loads of over 40 km.
Resumo:
Sandstone-type uranium deposits are frequently found close to oil fields or uraniferous sandstones contain bitumen or petroleum. However, few evidence has been presented to indicate the association of uranium mineralization with petroleum oxidation. Thus, Dongsheng uranium deposit in Ordos Basin and Qianjiadian deposit in Kailu Basin are taken for examples to solve the puzzle. Integration data from sedimentary petrology, mineralogy, race elements geochemistry, isotope geochemistry and organic geochemistry, the uranium and petroleum sources, and diagenetic paragenesis of the host sandstone are analyzed, and then the genetic relationship between microbes, petroleum and uranium deposits are discussed. The observation under microscope shows that the host sandstone samples from Middle Jurassic Zhiluo Formation in the Dongsheng deposit contained different kinds of metamorphic rock fragments, which should have been derived form outcrops north to this basin. The LREE/HREE ratios of gneiss and amphibolite sampled from outcrops were close to the highest and the lowest LREE/HREE ratios of the sandstones with well-compared chondrite-normalized REE patterns, respectively. So these results consistently indicated that parent rocks of sandstones were mainly contributed from these two kinds of metamorphic rocks. There was very high Th/U ratio for granite gneiss, which was a mainly potential U resource. Hydrocarbon inclusions and adsorbed hydrocarbons are observed under fluorescence microscope in the host sandstone of Dongsheng uranium deposit, suggesting that the sandstones may have been utilized as oil migration pathways. Based on biomarker parameters, it is indicated that the inclusion oils and adsorbed hydrocarbons were marginally mature to mature, and were derived from humic-sapropel type organic matter under poor reducing freshwater to semi-saline environment. The features are similar to those of organic matter extracted from Triassic sandstone and source rock, but are different from that of cretaceous sandstone. Thus, it can be concluded that the inclusion oils and adsorbed hydrocarbons were mainly derived from Triassic lacustrine facies source rock. Observation results under Scanning Electron Microscopy and Electron Microprobe with Energy Spectrum Analysis show that, in Dongsheng area, the main uranium ore mineral is coffinite. The coffinite is intimately intergrown or coexists with pyrite and calcite, thus, the solution during mineralization stage is inferred to be alkaline. The alkaline environment is not favored for uranium to be pre-concentrated by absorption, and then be reduced abiogenetically. δ34S of pyrite and δ13C of calcite indicate that pyrite was formed by bacterial sulfate reduction (BSR) and part of the carbon of calcite has been dirived from oxidation of petroleum, respectively. Additionally, petroleum is found biodegraded. All the lines of evidence consistently indicate that petroleum was involved in uranium mineralization. Coffinite with microbe-like structures is found in the high U sandstone samples and is composed of nanoparticles, indicating the coffinite is biogenic. The conclusion are also supportted by laboratory experiment studies, which have shown that SRB are capable of utilizing U(VI) as the preferred electron acceptor for respiration and reduce U(VI) to U(IV) directly, coupled the oxidaton of organic matter and sulfate reduction. Based on the research results mentioned above, in the Dongsheng area, coffinite is likely to have formed by mixing of brine containing petroleum derived from Triassic with uranium-bearing meteoric water from outcrops north to Ordos Basin. SRB utilize hydrocarbon as carbon source, and directly reduce U(VI) resulting in precipitation of coffinite. The product of metabolism, H2S and CO2, was precipitated as pyrite and calcite during mineralization stage. Petroleum in fluid inclusions and adsorbed type in host sandstone from Lower Cretaceous Yaojia Formation in Qianjiadian uranium deposit, Kailu Basin, are derived from Jurassic Jiufotang Formation in this basin and the uranium mineral consists mainly of pitchblende. The δ34S and δ13C values of pyrite and calcite during mineralization stage indicate SRB have likely degraded petroleum, which is similar to that of Dongsheng deposit. The alkaline environment as indicated by the diagenetic mineral assemblage calcite, Fe dolomite, pyrite and pitchblende deposit suggests that U ore in the Qiangjiajiadian has a similar origin, i.e., direct reduction by SRB. However, less part of pitchblende is intergrown with kaolinite, suggesting the solution during mineralization stage is acidic. The environment is favorable for U(VI) to be adsorded on quartz or other mineral, and then reduced by H2S produced by SRB. Thus, it can be concluded that U(VI) reduction with petroleum oxidation by SRB and other microbes is an important ore-forming mechanism in petroleum-related sandstone-type uranium deposits. The finding is significant in that it provides a theoretical basis for exploration of both uranium and petroleumr.
Resumo:
Through field outcrop dolomite observation, laboratory petrography (macroscopy, microscopy, cathodeluminescence and scan electronic microscopy), geochemistry (carbon-oxygen-strontium isotopes and trace elements) and fluid inclusion microthermometry study in Keping-Bachu area of Tarim Basin, it can be inferred that there are existing eight dolomite texture types within four evolution phases in Keping-Bachu area of Tarim Basin. The paragenesis of different dolomite texture types and associated minerals in Keping-Bachu area has been established. The carbon and oxygen isotopes of saddle dolomites and matrix dolomites overlap greatly. The Strontium isotopes results of Keping-Bachu outcrop area show that the strontium isotopes differentiation of the matrix and saddle dolomites is not obvious, the reason of which is that there is thousands of Cambrian-Ordovician dolomite strata below the stratum bearing the saddle dolomite. In the process of the heat flow upward migration, the isotopes of the heat interacts with the host rock, which leads to the similarity betwwen the strontium of the saddle dolomite and matrix dolomite. The strontium isotope of the saddle dolomite is not very radiogenic. the six types samples within four phases in the study area show Eu negatively. Comparing to the other types of samples, the δEu of saddle dolomite is relatively high falling into the range of 0.510-0.874, which shows that the saddle dolomite forms in the hydrothermal setting and is affected by the hydrothermal activity to some extend.The Lan/Ybn of saddle dolomite is high up to 15.726, which means that the HREE is very rich. It belongs to the typical hydrothermal genesis model. The δCe of saddle dolomite is positive anomaly, which is the result of high effect from the land source debris. The homogeneous temperature of the saddle dolomite falls into two ranges 110-120℃ and 125-160℃, after pressure correction, they are 141-152℃,157.5-196℃, the salinity of the saddle dolomite can reach to 20-25%. With the comparing with the burial history, the Th of the saddle dolomite is high than the ambient strata temperature, these data show that the saddle dolomite is of hydrothermal origin. The evolution trend of different dolomite and associated minerals is from matrix dolomite, dolomite cementation, saddle dolomite, quartz to calcite. Alonging with this evolution trend, the temperature of the diagenetic flow initiated from 80-100℃, after rising to 135-160℃, then gradually declined. Finally, a structurally-controlled dolomitization model is established in Keping-Bachu area of Tarim Basin.