998 resultados para Paracoccidioides brasiliensis infection
Resumo:
P>Matrix metalloproteinases (MMPs) modulate extracellular matrix turnover, inflammation and immunity. We studied MMP-9 and MMP-2 in experimental paracoccidioidomycosis. At 15 and 120 days after infection (DAI) with virulent Paracoccidioides brasiliensis, MMP-9 was positive by immunohistochemistry in multinucleated giant cells, in mononuclear cells with macrophage and lymphocyte morphologies and also in fungal cells in the lesions of susceptible and resistant mice. Using gelatin zymography, pro- and active MMP-9 and active MMP-2 were detected in all infected mice, but not in controls. Gelatinolytic activity was not observed in P. brasiliensis extracts. Semiquantitative analysis of gelatinolytic activities revealed weak or absent MMP-2 and strong MMP-9 activity in both mouse strains at 15 DAI, declining at 120 DAI. Avirulent P. brasiliensis-infected mice had residual lesions with MMP-9-positive pseudoxantomatous macrophages, but no gelatinase activity at 120 DAI. Our findings demonstrate the induction of MMPs, particularly MMP-9, in experimental paracoccidioidomycosis, suggesting a possible influence in the pattern of granulomas and in fungal dissemination.
Resumo:
The role of nitric oxide (NO) in granulomas of Paracoccidioides brasiliensis-infected inducible NO synthase-deficient C57BL/6 mice (iNOS KO) and their wild-type counterparts and its association with osteopontin (OPN) and matrix metalloproteinases (MMPs) was studied. At 15 days after infection (DAI), iNOS KO mice showed compact and necrotic granulomas with OPN+ macrophages and multinucleated giant cells, whereas wild-type mice developed loose granulomas with many fungi and OPN+ cells distributed throughout the tissue. In addition, high OPN levels and fungal load were observed in iNOS KO mice. Both experimental groups had MMP-9 activity. At 120 DAI, iNOS KO had smaller granulomas with OPN+ cells, lower OPN levels, lower fungal load and decreased MMP-9 activity compared with wild-type mice. These findings suggest that NO has an important role in granuloma modulation, by controlling OPN and MMP production, as well as by inducing loose granulomas formation and fungal dissemination, resulting, at later phases, in progression of paracoccidioidomycosis.
Resumo:
The participation of osteopontin (OPN) in Paracoccidioides brasiliensis infected mice, its association to granulomatogenesis, severity of infection, pattern of lesions, nitric oxide (NO) levels and fungal load were evaluated in this investigation. Immunohistochemistry analysis showed marked OPN staining in extracellular matrix and in macrophages and multinucleated giant cells at the center of lesions, suggesting a possible role of OPN in the distribution of these cells within the granulomas. At 15 days post-infection with a virulent P. brasiliensis isolate, OPN(+) cells were more numerous and intensely immunostained in the loose granulomas of susceptible mice than in those of resistant mice. In addition, high fungal loads and low NO levels were observed in susceptible mice. At 120 days after infection, resistant mice had increased total OPN levels (ELISA) and OPN positivity in compact granulomas, higher NO levels and lower fungal loads than susceptible mice. Residual lesions associated with low OPN levels, high NO and control of fungal dissemination were observed in both mouse strains at 120 days post-infection with the slightly virulent fungal isolate. Therefore, OPN could be associated with higher severity of the disease in an early phase of infection and with a degree of control of the progressive infection.
Resumo:
The mechanisms that govern the initial interaction between Paracoccidioides brasiliensis, a primary dimorphic fungal pathogen, and cells of the innate immunity need to be clarified. Our previous studies showed that Toll-like receptor 2 (TLR2) and TLR4 regulate the initial interaction of fungal cells with macrophages and the pattern of adaptive immunity that further develops. The aim of the present investigation was to assess the role of MyD88, an adaptor molecule used by TLRs to activate genes of the inflammatory response in pulmonary paracoccidioidomycosis. Studies were performed with normal and MyD88(-/-) C57BL/6 mice intratracheally infected with P. brasiliensis yeast cells. MyD88(-/-) macrophages displayed impaired interaction with fungal yeast cells and produced low levels of IL-12, MCP-1, and nitric oxide, thus allowing increased fungal growth. Compared with wild-type (WT) mice, MyD88(-/-) mice developed a more severe infection of the lungs and had marked dissemination of fungal cells to the liver and spleen. MyD88(-/-) mice presented low levels of Th1, Th2, and Th17 cytokines, suppressed lymphoproliferation, and impaired influx of inflammatory cells to the lungs, and this group of cells comprised lower numbers of neutrophils, activated macrophages, and T cells. Nonorganized, coalescent granulomas, which contained high numbers of fungal cells, characterized the severe lesions of MyD88(-/-) mice; the lesions replaced extensive areas of several organs. Therefore, MyD88(-/-) mice were unable to control fungal growth and showed a significantly decreased survival time. In conclusion, our findings demonstrate that MyD88 signaling is important in the activation of fungicidal mechanisms and the induction of protective innate and adaptive immune responses against P. brasiliensis.
Resumo:
Alveolar macrophages ( AM) are the first host cells to interact with Paracoccidioides brasiliensis (Pb), a primary human pathogen that causes severe pulmonary infections in Latin America. To better understand innate immunity in pulmonary paracoccidioidomycosis, we decided to study the fungicidal and secretory abilities of AM from resistant (A/J) and susceptible (B10.A) mice to infection. Untreated, IFN-gamma and IL-12 primed AM from B10. A and A/J mice were challenged with P. brasiliensis yeasts and cocultured for 72 h. B10. A macrophages presented an efficient fungicidal ability, were easily activated by both cytokines, produced high levels of nitric oxide ( NO), IL-12, and MCP-1 associated with low amounts of IL-10 and GM-CSF. In contrast, A/J AM showed impaired cytokine activation and fungal killing, secreted high levels of IL- 10 and GM-CSF but low concentrations of NO, IL- 12, and MCP-1. The fungicidal ability of B10. A but not of A/J macrophages was diminished by aminoguanidine treatment, although only the neutralization of TGF-beta restored the fungicidal activity of A/J cells. This pattern of macrophage activation resulted in high expression of MHC class II antigens by A/J cells, while B10. A macrophages expressed elevated levels of CD40. Unexpectedly, our results demonstrated that susceptibility to a fungal pathogen can be associated with an efficient innate immunity, while a deficient innate response can ultimately favor the development of a resistant pattern to infection. Moreover, our data suggest that different pathogen recognition receptors are used by resistant and susceptible hosts to interact with P. brasiliensis yeasts, resulting in divergent antigen presentation, acquired immunity, and disease outcomes.
Resumo:
Innate immunity is based in pre-existing elements of the immune system that directly interact with all types of microbes leading to their destruction or growth inhibition. Several elements of this early defense mechanism act in concert to control initial pathogen growth and have profound effect on the adaptative immune response that further develops. Although most studies in paracoccidioidomycosis have been dedicated to understand cellular and humoral immune responses, innate immunity remains poorly defined. Hence, the main purpose of this review is to present and discuss some mechanisms of innate immunity developed by resistant and susceptible mice to Paracoccidioides brasiliensis infection, trying to understand how this initial host-pathogen interface interferes with the protective or deleterious adaptative immune response that will dictate disease outcome. An analysis of some mechanisms and mediators of innate immunity such as the activation of complement proteins, the microbicidal activity of natural killer cells and phagocytes, the production of inflammatory eicosanoids, cytokines, and chemokines among others, is presented trying to show the important role played by innate immunity in the host response to P. brasiliensis infection.
Resumo:
The fungus Paracoccidioides brasiliensis has been isolated from nine-banded armadillos (Dasypus novemcinctus) in different regions where paracoccidiodomycosis (PCM) is endemic. The link between PCM and these animals has provided the first valuable clue in the effort to elucidate the ecological niche of P. brasiliensis. The present study was aimed at correlating P. brasiliensis infection in armadillos with local ecological features and, if possible, the presence of the fungus in the soil in the Botucatu hyperendemic area of PCM. In this region the mean temperature ranges from 14.8 to 25.8degreesC and the annual average precipitation is 1520 mm. The sites where 10 infected animals (positive group) were collected were studied and compared with the sites where five uninfected animals were found. The occurrence of the fungus in soil samples collected from the positive armadillos' burrows and foraging sites was investigated by the indirect method of animal inoculation. Environmental data from the sites of animal capture, such as temperature, rainfall, altitude, vegetation, soil composition, presence of water and proximity of urban areas, were recorded. All 37 soil samples collected from the sites had negative fungal cultures. Positive animals were found much more frequently in sites with disturbed vegetation, such as riparian forests and artificial Eucalyptus Or Pinus forests, in altitudes below 800 m, near water sources. The soil type of the sites of positive animals was mainly sandy, with medium to low concentrations of organic matter. The pH was mainly acidic at all the sites, although the concentrations of aluminum cations (H+Al) were lower at the sites where positive animals were found. Positive armadillos were also captured in sites very close to urban areas. Our data and previous studies indicate that P. brasiliensis occurs preferentially in humid and shady disturbed forests in a strong association with armadillos.
Resumo:
The effect of macrophage blockade on the natural resistance and on the adaptative immune response of susceptible (B10.D2/oSn) and resistant (A/Sn) mice to Paracoccidioides brasiliensis infection was investigated. B10.D2/oSn and A/Sn mice previously injected with colloidal carbon were infected ip with yeast cells to determine the 50% lethal dose, and to evaluate the anatomy and histopathology, macrophage activation, antibody production and DTH reactions. Macrophage blockade rendered both resistant and susceptible mice considerably more susceptible to infection, as evidenced by increased mortality and many disseminated lesions. P. brasiliensis infection and/or carbon treatment increased the ability of macrophages from resistant mice to spread up to 25 days after treatment. In susceptible mice the enhanced spreading capacity induced by carbon treatment was impaired at ail assayed periods except at 1 week after infection. Macrophage blockade enhanced DTH reactions in resistant mice, but did not alter these reactions in susceptible mice, which remained anergic. To the contrary, macrophage blockade enhanced specific antibody production by susceptible mice, but did nor affect the low levels produced by resistant mice. The effect of macrophage blockade confirms the natural tendency of resistant animals to mount DTH reactions in the course of the disease and the preferential antibody response developed by susceptible mice after P. brasiliensis infection. on the whole, macrophage functions appear to play a fundamental role in the natural and acquired resistance mechanisms to P. brasiliensis infection.
Resumo:
Limited information is available regarding the modulation of genes involved in the innate host response to Paracoccidioides brasiliensis, the etiologic agent of paracoccidioidomycosis. Therefore, we sought to characterize, for the first time, the transcriptional profile of murine bone marrow-derived dendritic cells (DCs) at an early stage following their initial interaction with P. brasiliensis. DCs connect innate and adaptive immunity by recognizing invading pathogens and determining the type of effector T-cell that mediates an immune response. Gene expression profiles were analyzed using microarray and validated using real-time RT-PCR and protein secretion studies. A total of 299 genes were differentially expressed, many of which are involved in immunity, signal transduction, transcription and apoptosis. Genes encoding the cytokines IL-12 and TNF-alpha, along with the chemokines CCL22, CCL27 and CXCL10, were up-regulated, suggesting that P. brasiliensis induces a potent proinflammatory response in DCs. In contrast, pattern recognition receptor (PRR)-encoding genes, particularly those related to Toll-like receptors, were down-regulated or unchanged. This result prompted us to evaluate the expression profiles of dectin-1 and mannose receptor, two other important fungal PRRs that were not included in the microarray target cDNA sequences. Unlike the mannose receptor, the dectin-1 receptor gene was significantly induced, suggesting that this beta-glucan receptor participates in the recognition of P. brasiliensis. We also used a receptor inhibition assay to evaluate the roles of these receptors in coordinating the expression of several immune-related genes in DCs upon fungal exposure. Altogether, our results provide an initial characterization of early host responses to P. brasiliensis and a basis for better understanding the infectious process of this important neglected pathogen.
Resumo:
The objective of the study was to evaluate Paracoccidioides brasiliensis infection in urban dogs from the municipality of Monte Negro, Rondonia, Western Brazilian Amazon. The serum samples (n=126) were analyzed by indirect ELISA and the immunodiffusion test using P. brasiliensis gp43 and exoantigen as antigens, respectively. A positivity of 54.8% was observed only in the ELISA test and no statistical difference was observed in the seroprevalence in relation to age or sex. This is the first paracoccidioidomycosis survey carried out with dogs from the Western Brazilian Amazon. The higher positivity rates of P. brasiliensis infection observed in this study suggest that veterinarians must be alert to detect new cases of natural disease in dogs living in paracoccidioidomycosis endemic areas.
Differential gene expression analysis of Paracoccidioides brasiliensis during keratinocyte infection
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Paracoccidioides brasiliensis probably uses many different mechanisms to establish itself in the host and cause disease. In this work, we assess an in vitro model system which uses cultured mammalian cells to investigate the virulence factors of P. brasiliensis. We were able to demonstrate an invasion process of the yeast form of this fungus in Vero cell cultures. We deduced that the overall invasive process involved three steps: adhesion, followed by invasion of individual epithelial cells and spread to adjacent cells.
Resumo:
The increase in solid organ transplantations may soon create a rise in the occurrence of endemic fungal diseases, such as paracoccidioidomycosis, due to the lack of rigorous screening of donors from endemic areas. Here we present the first case of an immunocompetent and asymptomatic kidney donor who had Paracoccidioides brasiliensis infected-adrenal tissue but no glandular dysfunction.