995 resultados para Paracoccidioides brasiliensis - Patogenicidade
Resumo:
Pós-graduação em Doenças Tropicais - FMB
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Neutrophils (PMN) play a central role in host defense against the neglected fungal infection paracoccidioidomycosis (PCM), which is caused by the dimorphic fungus Paracoccidioides brasiliensis (Pb). PCM is of major importance, especially in Latin America, and its treatment relies on the use of antifungal drugs. However, the course of treatment is lengthy, leading to side effects and even development of fungal resistance. The goal of the study was to use low-level laser therapy (LLLT) to stimulate PMN to fight Pb in vivo. Swiss mice with subcutaneous air pouches were inoculated with a virulent strain of Pb or fungal cell wall components (Zymosan), and then received LLLT (780 nm; 50 mW; 12.5 J/cm2; 30 seconds per point, giving a total energy of 0.5 J per point) on alternate days at two points on each hind leg. The aim was to reach the bone marrow in the femur with light. Non-irradiated animals were used as controls. The number and viability of the PMN that migrated to the inoculation site was assessed, as well as their ability to synthesize proteins, produce reactive oxygen species (ROS) and their fungicidal activity. The highly pure PMN populations obtained after 10 days of infection were also subsequently cultured in the presence of Pb for trials of protein production, evaluation of mitochondrial activity, ROS production and quantification of viable fungi growth. PMN from mice that received LLLT were more active metabolically, had higher fungicidal activity against Pb in vivo and also in vitro. The kinetics of neutrophil protein production also correlated with a more activated state. LLLT may be a safe and non-invasive approach to deal with PCM infection.
Resumo:
Paracoccidioides brasiliensis causes paracoccidioidomycosis (PCM) that is one of the most prevalent systemic human mycoses in Latin America. Armadillos show a high incidence of PCM infection and could, therefore, be a natural reservoir for this fungus. In this study were compared the virulence profiles of isolates obtained from nine-banded armadillos (Dasypus novemcinctus) (PbT1 and PbT4) and isolates from PCM patients (Pb265 and Bt83). Pathogenicity was evaluated by fungal load and analysis of colony morphology. Immunity against the fungus was tested by delayed type hypersensitivity test (DTH) and antibody quantification by ELISA. The higher virulence of PbT1 and PbT4 was suggested by higher fungal load in spleen and lungs. Armadillo isolates and Bt83 presented a cotton-like surface contrasting with the cerebriform appearance of Pb265. All isolates induced cellular and humoral immune responses in infected BALB/c mice. DTH reactions were similarly induced by the four isolates, however, a great variability was observed in specific antibody levels, being the highest ones induced by Bt83 and PbT4. The present work confirms that armadillos harbor P. brasiliensis, whose multiplication and induced immunity in experimentally infected mice are heterogeneous, resembling the behavior of isolates from human PCM. This study reinforces the possibility that armadillos play an important role in the biological cycle of this pathogen.
Resumo:
The thermally dimorphic fungus Paracoccidioides brasiliensis (Pb) is the causative agent of paracoccidioidomycosis (PCM), one of the most frequent systemic mycosis that affects the rural population in Latin America. PCM is characterized by a chronic inflammatory granulomatous reaction, which is consequence of a Th1-mediated adaptive immune response. In the present study we investigated the mechanisms involved in the immunoregulation triggered after a prior contact with cell-free antigens (CFA) during a murine model of PCM. The results showed that the inoculation of CFA prior to the infection resulted in disorganized granulomatous lesions and increased fungal replication in the lungs, liver and spleen, that paralleled with the higher levels of IL-4 when compared with the control group. The role of IL-4 in facilitating the fungal growth was demonstrated in IL-4-deficient- and neutralizing anti-IL-4 mAb-treated mice. The injection of CFA did not affect the fungal growth in these mice, which, in fact, exhibited a significant diminished amount of fungus in the tissues and smaller granulomas. Considering that in vivo anti-IL-4-application started one week after the CFA-inoculum, it implicates that IL-4-CFA-induced is responsible by the mediation of the observed unresponsiveness. Further, the characterization of CFA indicated that a proteic fraction is required for triggering the immunosuppressive mechanisms, while glycosylation or glycosphingolipids moieties are not. Taken together, our data suggest that the prior contact with soluble Pb antigens leads to severe PCM in an IL-4 dependent manner.
Resumo:
There is recent evidence that galectin-3 participates in immunity to infections, mostly by tuning cytokine production. We studied the balance of Th1/Th2 responses to P. brasiliensis experimental infection in the absence of galectin-3. The intermediate resistance to the fungal infection presented by C57BL/6 mice, associated with the development of a mixed type of immunity, was replaced with susceptibility to infection and a Th2-polarized immune response, in galectin-3-deficient (gal3(-/-)) mice. Such a response was associated with defective inflammatory and delayed type hypersensitivity (DTH) reactions, high IL-4 and GATA-3 expression and low nitric oxide production in the organs of infected animals. Gal3(-/-) macrophages exhibited higher TLR2 transcript levels and IL-10 production compared to wild-type macrophages after stimulation with P. brasiliensis antigens. We hypothesize that, during an in vivo P. brasiliensis infection, galectin-3 exerts its tuning role on immunity by interfering with the generation of regulatory macrophages, thus hindering the consequent Th2-polarized type of response.
Resumo:
This study aimed to investigate the immunological mechanisms involved in the gender distinct incidence of paracoccidioidomycosis (pcm), an endemic systemic mycosis in Latin America, which is at least 10 times more frequent in men than in women. Then, we compared the immune response of male and female mice to Paracoccidioides brasiliensis infection, as well as the influence in the gender differences exerted by paracoccin, a P. brasiliensis component with carbohydrate recognition property. High production of Th1 cytokines and T-bet expression have been detected in the paracoccin stimulated cultures of spleen cells from infected female mice. In contrast, in similar experimental conditions, cells from infected males produced higher levels of the Th2 cytokines and expressed GATA-3. Macrophages from male and female mice when stimulated with paracoccin displayed similar phagocytic capability, while fungicidal activity was two times more efficiently performed by macrophages from female mice, a fact that was associated with 50% higher levels of nitric oxide production. In order to evaluate the role of sexual hormones in the observed gender distinction, we have utilized mice that have been submitted to gonadectomy followed by inverse hormonal reconstitution. Spleen cells derived from castrated males reconstituted with estradiol have produced higher levels of IFN-gamma (1291+/-15 pg/mL) and lower levels of IL-10 (494+/-38 pg/mL), than normal male in response to paracoccin stimulus. In contrast, spleen cells from castrated female mice that had been treated with testosterone produced more IL-10 (1284+/-36 pg/mL) and less IFN-gamma (587614 pg/mL) than cells from normal female. In conclusion, our results reveal that the sexual hormones had a profound effect on the biology of immune cells, and estradiol favours protective responses to P. brasiliensis infection. In addition, fungal components, such as paracoccin, may provide additional support to the gender dimorphic immunity that marks P. brasiliensis infection.
Resumo:
Differences between the respiratory chain of the fungus Paracoccidioides brasiliensis and its mammalian host are reported. Respiration, membrane potential, and oxidative phosphorylation in mitochondria from P. brasiliensis spheroplasts were evaluated in situ, and the presence of a complete (Complex I-V) functional respiratory chain was demonstrated. In succinate-energized mitochondria, ADP induced a transition from resting to phosphorylating respiration. The presence of an alternative NADH-ubiquinone oxidoreductase was indicated by: (i) the ability to oxidize exogenous NADH and (ii) the lack of sensitivity to rotenone and presence of sensitivity to flavone. Malate/NAD(+)-supported respiration suggested the presence of either a mitochondrial pyridine transporter or a glyoxylate pathway contributing to NADH and/or succinate production. Partial sensitivity of NADH/succinate-supported respiration to antimycin A and cyanide, as well as sensitivity to benzohydroxamic acids, suggested the presence of an alternative oxidase in the yeast form of the fungus. An increase in activity and gene expression of the alternative NADH dehydrogenase throughout the yeast`s exponential growth phase was observed. This increase was coupled with a decrease in Complex I activity and gene expression of its subunit 6. These results support the existence of alternative respiratory chain pathways in addition to Complex I, as well as the utilization of NADH-linked substrates by P. brasiliensis. These specific components of the respiratory chain could be useful for further research and development of pharmacological agents against the fungus.
Resumo:
Paracoccidioides brasiliensis is a thermodimorphic human pathogenic fungus that causes paracoccidioidomycosis (PCM), which is the most prevalent systemic mycosis in Latin America. Differentiation from the mycelial to the yeast form (M-to-Y) is an essential step for the establishment of PCM. We evaluated the involvement of mitochondria and intracellular oxidative stress in M-to-Y differentiation. M-to-Y transition was delayed by the inhibition of mitochondrial complexes III and IV or alternative oxidase (AOX) and was blocked by the association of AOX with complex III or IV inhibitors. The expression of P. brasiliensis aox (Pbaox) was developmentally regulated through M-to-Y differentiation, wherein the highest levels were achieved in the first 24 h and during the yeast exponential growth phase; Pbaox was upregulated by oxidative stress. Pbaox was cloned, and its heterologous expression conferred cyanide-resistant respiration in Saccharomyces cerevisiae and Escherichia coli and reduced oxidative stress in S. cerevisiae cells. These results reinforce the role of PbAOX in intracellular redox balancing and demonstrate its involvement, as well as that of other components of the mitochondrial respiratory chain complexes, in the early stages of the M-to-Y differentiation of P. brasiliensis.
Resumo:
Paracoccidioides brasiliensis infectious process relies on the initial expression of virulence faactors that are assumed to be controlled by molecular mechanisms through which the conidia and/or mycelial fragments convert to yeast cells. In order to analyze the profile of the thermally-induced dimorphic gene expression, 48 h C-L transition cultures which had been incubated at 36 degrees C were studied. By this time approximately 50% of the conidial population had already reverted to yeast form cells. At this transition time, an EST-Orestes library was constructed and characterized. As a result, 79 sequences were obtained, of which 39 (49.4%) had not been described previously in other libraries of this fungus and which could represent novel exclusive C-Y transition genes. Two of these sequences are, among others, cholestanol delta-isomerase, and electron transfer flavoprotein-ubiquinoneoxidoreductase (ETF-QO). The other 40 (50.6%) sequences were shared with Mycelia (M), Yeast (Y) or Mycelia to yest transition (M-Y) libraries. An important component of this group of sequences is a putative response regulator receiver SKN7, a protein of high importance in stress adaptation and a regulator of virulence in some bacteria and fungi. This is the first report identifying genes expressed during the C-Y transition process, the initial step required to understand the natural history of P brasiliensis conidia induced infection.
Resumo:
Glycoprotein gp70 is an important intracellular antigen from Paracoccidioides brasillensis that elicits both humoral and cellular immune responses. Herein, the PbGP70 gene cloning from isolate Pb18 using internal peptide sequence information is reported. The deduced protein sequence bears two N-glycosylation sites, antigenic sites and two mouse T-cell epitopes. Anti-recombinant gp70 (rPbgp70) polyclonal antibodies reacted with a 70-kDa component in total cell extract of A brasiliensis, while MAbC5F11 and paracoccidioiclomycosis patients` sera recognized rPbgp70. Confocal microscopy with anti-rPbgp70 and MAbC5F11 showed intense staining and cytoplasmatic co-localization. The protein sequence belongs to the flavoprotein monooxygenase family which groups important anti-oxidative bioactive compounds. We found increased PbGP70 transcript accumulation under oxidative stress induced by H(2)O(2), during fungal growth and in macrophage phagocyted/bound yeasts. Therefore, gp70 might play a dual role in P. brasiliensis by both eliciting immune cellular and humoral responses in the host and protecting the fungus from oxidative stress generated by phagocytic cells. (c) 2009 Elsevier Inc. All rights reserved.
Resumo:
Paracoccidioides brasiliensis is characterized by a multiple budding phenotype and a polymorphic cell growth, leading to the formation of cells with extreme variations in shape and size. Since Cdc42 is a pivotal molecule in establishing and maintaining polarized growth for diverse cell types, as well as during pathogenesis of certain fungi, we evaluated its role during cell growth and virulence of the yeast-form of P. brasiliensis. We used antisense technology to knock-down PbCDC42`s expression in P. brasiliensis yeast cells, promoting a decrease in cell size and more homogenous cell growth, altering the typical polymorphism of wild-type cells. Reduced expression levels also lead to increased phagocytosis and decreased virulence in a mouse model of infection. We provide genetic evidences underlying Pbcdc42p as an important protein during host-pathogen interaction and the relevance of the polymorphic nature and cell size in the pathogenesis of P. brasiliensis. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We show indirect evidences for the possible involvement of NIT-2-like binding motifs in transcription modulation of the PbGP43 gene, which codes for an important antigen from the human fungal pathogen Paracoccidioides brasiliensis. This investigation was motivated by the finding of 23 NIT2-like sites within the proximal -2047 nucleotides of the PbGP43 5` intergenic region from the Pb339 isolate. They compose four clusters, two of them identical. We found four NIT2-containing probes that were positive in electrophoretic mobility shift assays and further analyzed them. PbGP43 could be modulated by nitrogen primary sources in Pb339, Pb3 and Pb18 isolates, as observed by reverse transcription (RT) real time-PCR. Gene reporter assays conducted in Aspergillus nidulans suggested that the minimal fragment responsible for nitrogen modulation lies within -480 bp of the PbGP43 gene. This is the first report on PbGP43 transcription modulation in response to nitrogen primary sources, which might help understand its regulation during infection. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Heat-shock proteins are Molecules with extensive data showing their potential as immunomodulators of different types of diseases, The gene of HSP65 from Mycobacterium leprae has shown prophylactic and immunotherapeutic effects against a broad arrays of experimental models including tuberculosis, leishmaniasis, arthritis and diabetes. With this in mind, we tested the DNAhsp65 vaccine using an experimental model of Paraccocidiodomycosis, an important endemic mycosis in Latin America. The intramuscular immunization with DNAhsp65 induced, in BALB/c mice, an increase of Th1-levels cytokines and a reduction of fungal burdens resulted in a marked reduction of collagen and lung remodeling. DNAhsp65 may be an attractive candidate for prevention, therapy and as an adjuvant for mycosis treatment. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The dimorphic fungus Paracoccidioides brasiliensis is the causative agent of paracoccidioidomycosis, the most frequent systemic mycosis in Latin America. Our group has been working with paracoccin, a P. brasiliensis lectin with MM 70 kDa. which is purified by affinity, with immobilized N-acetylglucosamine (GlcNAc). Paracoccin has been described to play a role in fungal adhesion to extracellular matrix components and to induce high and persistent levels or TNF alpha. and nitric oxide production by macrophages. In the cell wall, paracoccin colocalizes with the beta-1,4-homopolymer of GlcNAc into the budding sites of the P. brasiliensis yeast cell. In this paper we present a protocol for the chitin-affinity purification or paracoccin. This procedure provided higher yields than those achieved by means of the technique based oil the affinity of this lectin with GlcNAc and had an impact on downstream assays. SDS-PAGE and Western blot analysis revealed similarities between the N-acetylglucosamine- and chitin-bound fractions, confirmed by MALDI-TOF-MS of trypsinic peptides. Western blot of two-dimensional gel electrophoresis of the yeast extract showed a major spot with M(r) 70000 and pl approximately 5.63. Moreover, an N-acetyl-beta-D-glucosaminidase activity was reported for paracoccin, thereby providing new insights into the mechanisms that lead to cell wall remodelling and opening new perspectives for its structural characterization. Copyright (C) 2009 John Wiley & Sons. Ltd.