951 resultados para ParE toxin
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
The purpose of this paper is to determine the prevalence of the toxic shock toxin gene (tst) and to enumerate the circulating strains of methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) in Australian isolates collected over two decades. The aim was to subtype these strains using the binary genes pvl, cna, sdrE, pUB110 and pT181. Isolates were assayed using real-time polymerase chain reaction (PCR) for mecA, nuc, 16 S rRNA, eight single-nucleotide polymorphisms (SNPs) and for five binary genes. Two realtime PCR assays were developed for tst. The 90 MRSA isolates belonged to CC239 (39 in 1989, 38 in 1996 and ten in 2003), CC1 (two in 2003) and CC22 (one in 2003). The majority of the 210 MSSA isolates belonged to CC1 (26), CC5 (24) and CC78 (23). Only 18 isolates were tst-positive and only 15 were pvl-positive. Nine MSSA isolates belonged to five binary types of ST93, including two pvlpositive types. The proportion of tst-positive and pvl-positive isolates was low and no significant increase was demonstrated. Dominant MSSA clonal complexes were similar to those seen elsewhere, with the exception of CC78. CC239 MRSA (AUS-2/3) was the predominant MRSA but decreased significantly in prevalence, while CC22 (EMRSA-15) and CC1 (WA-1) emerged. Genetically diverse ST93 MSSA predated the emergence of ST93- MRSA (the Queensland clone).
Resumo:
Staphylococcus aureus is a common pathogen that causes a variety of infections including soft tissue infections, impetigo, septicemia toxic shock and scalded skin syndrome. Traditionally, Methicillin-Resistant Staphylococcus aureus (MRSA) was considered a Hospital-Acquired (HA) infection. It is now recognised that the frequency of infections with MRSA is increasing in the community, and that these infections are not originating from hospital environments. A 2007 report by the Centers for Disease Control and Prevention (CDC) stated that Staphylococcus aureus is the most important cause of serious and fatal infections in the USA. Community-Acquired MRSA (CA-MRSA) are genetically diverse and distinct, meaning they are able to be identified and tracked by way of genotyping. Genotyping of MRSA using Single nucleotide polymorphisms (SNPs) is a rapid and robust method for monitoring MRSA, specifically ST93 (Queensland Clone) dissemination in the community. It has been shown that a large proportion of CA-MRSA infections in Queensland and New South Wales are caused by ST93. The rationale for this project was that SNP analysis of MLST genes is a rapid and cost-effective method for genotyping and monitoring MRSA dissemination in the community. In this study, 16 different sequence types (ST) were identified with 41% of isolates identified as ST93 making it the predominate clone. Males and Females were infected equally with an average patient age of 45yrs. Phenotypically, all of the ST93 had an identical antimicrobial resistance pattern. They were resistant to the β-lactams – Penicillin, Flu(di)cloxacillin and Cephalothin but sensitive to all other antibiotics tested. Virulence factors play an important role in allowing S. aureus to cause disease by way of colonising, replication and damage to the host. One virulence factor of particular interest is the toxin Panton-Valentine leukocidin (PVL), which is composed of two separate proteins encoded by two adjacent genes. PVL positive CA-MRSA are shown to cause recurrent, chronic or severe skin and soft tissue infections. As a result, it is important that PVL positive CA-MRSA is genotyped and tracked. Especially now that CA-MRSA infections are more prevalent than HA-MRSA infections and are now deemed endemic in Australia. 98% of all isolates in this study tested positive for the PVL toxin gene. This study showed that PVL is present in many different community based ST, not just ST93, which were all PVL positive. With this toxin becoming entrenched in CA-MRSA, genotyping would provide more accurate data and a way of tracking the dissemination. PVL gene can be sub-typed using an allele-specific Real-Time PCR (RT-PCR) followed by High resolution meltanalysis. This allows the identification of PVL subtypes within the CA-MRSA population and allow the tracking of these clones in the community.
Resumo:
Chlamydia trachomatis is a major cause of sexually transmitted diseases worldwide. There currently is no vaccine to protect against chlamydial infection of the female reproductive tract. Vaccine development has predominantly involved using the murine model, however infection of female guinea pigs with Chlamydia caviae more closely resembles chlamydial infection of the human female reproductive tract, and presents a better model to assess potential human chlamydial vaccines. We immunised female guinea pigs intranasally with recombinant major outer membrane protein (r-MOMP) combined with CpG-10109 and cholera toxin adjuvants. Both systemic and mucosal immune responses were elicited in immunised animals. MOMP-specific IgG and IgA were present in the vaginal mucosae, and high levels of MOMP-specific IgG were detected in the serum of immunised animals. Antibodies from the vaginal mucosae were also shown to be capable of neutralising C. caviae in vitro. Following immunisation, animals were challenged intravaginally with a live C. caviae infection of 102 inclusion forming units. We observed a decrease in duration of infection and a significant (p<0.025) reduction in infection load in r-MOMP immunised animals, compared to animals immunised with adjuvant only. Importantly, we also observed a marked reduction in upper reproductive tract (URT) pathology in r-MOMP immunised animals. Intranasal immunisation of female guinea pigs with r-MOMP was able to provide partial protection against C. caviae infection, not only by reducing chlamydial burden but also URT pathology. This data demonstrates the value of using the guinea pig model to evaluate potential chlamydial vaccines for protection against infection and disease pathology caused by C. trachomatis in the female reproductive tract.
Resumo:
Successful control of sexually transmitted diseases (STDs) through vaccination will require the development of vaccine strategies that target protective immunity to both the female and male reproductive tracts (MRT). In the male, the immune privileged nature of the male reproductive tract provides a barrier to entry of serum immunoglobulins into the male reproductive ducts, thereby preventing the induction of protective immunity using conventional injectable vaccination techniques. In this study we investigated the potential of intranasal (IN) immunization to elicit anti-chlamydial immunity in BALB/c male mice. Intranasal immunization with Chlamydia muridarum major outer membrane protein (MOMP) admixed with cholera toxin (CT) resulted in high levels of MOMP-specific IgA in prostatic fluids (PF) and MOMP-specific IgA-secreting cells in the prostate. Prostatic fluid IgA inhibited in vitro infection of McCoy cells with C. muridarum. Using RT-PCR we also show that mRNA for the polymeric immunoglobulin receptor (PIgR), which transports IgA across mucosal epithelia, is expressed only in the prostate but not in other regions of the male reproductive ducts upstream of the prostate. These data suggest that using intranasal immunization to target IgA to the prostate may protect males against STDs while at the same time maintaining the state of immune privilege within the MRT.
Resumo:
Chlamydia trachomatis is a pathogen of the genital tract and ocular epithelium. Infection is established by the binding of the metabolically inert elementary body (EB) to epithelial cells. These are taken up by endocytosis into a membrane-bound vesicle termed an inclusion. The inclusion avoids fusion with host lysosomes, and the EBs differentiate into the metabolically active reticulate body (RB), which replicates by binary fission within the protected environment of the inclusion. During the extracellular EB stage of the C. trachomatis life cycle, antibody present in genital tract or ocular secretions can inhibit infection both in vivo and in tissue culture. The RB, residing within the intracellular inclusion, is not accessible to antibody, and resolution of infection at this stage requires a cell-mediated immune response mediated by gamma interferon-secreting Th1 cells. Thus, an ideal vaccine to protect against C. trachomatis genital tract infection should induce both antibody (immunoglobulin A [IgA] and IgG) responses in mucosal secretions to prevent infection by chlamydial EB and a strong Th1 response to limit ascending infection to the uterus and fallopian tubes. In the present study we show that transcutaneous immunization with major outer membrane protein (MOMP) in combination with both cholera toxin and CpG oligodeoxynucleotides elicits MOMP-specific IgG and IgA in vaginal and uterine lavage fluid, MOMP-specific IgG in serum, and gamma interferon-secreting T cells in reproductive tract-draining caudal and lumbar lymph nodes. This immunization protocol resulted in enhanced clearance of C. muridarum (C. trachomatis, mouse pneumonitis strain) following intravaginal challenge of BALB/c mice.
Resumo:
In North America and Europe, the binary toxin positive Clostridium difficile strains of the ribotypes 027 and 078 have been associated with death, toxic megacolon and other adverse outcomes. Following an increase in C. difficile infections (CDIs) in Queensland, a prevalence study involving 175 hospitals was undertaken in early 2012, identifying 168 cases of CDI over a 2 month period. Patient demographics and clinical characteristics were recorded, and C. difficile isolates were ribotyped and tested for the presence of binary toxin genes. Most patients (106/168, 63.1%) were aged over 60 years. Overall, 98 (58.3%) developed symptoms after hospitalisation; 89 cases (53.0%) developed symptoms more than 48 hours after admission. Furthermore, 27 of the 62 (67.7%) patients who developed symptoms in the community ad been hospitalised within the last 3 months. Thirteen of the 168 (7.7%) cases identified had severe disease, resulting in admission to the Intensive Care Unit or death within 30 days of the onset of symptoms. The 3 most common ribotypes isolated were UK 002 (22.9%), UK 014 (13.3%) and the binary toxin-positive ribotype UK 244 (8.4%). The only other binary toxin positive ribotype isolated was UK 078 (n = 1). Of concern was the detection of the binary toxin positive ribotype UK 244, which has recently been described in other parts of Australia and New Zealand. No isolates were of the international epidemic clone of ribotype UK 027, although ribotype UK 244 is genetically related to this clone. Further studies are required to track the epidemiology of ribotype UK 244 in Australia and New Zealand. Commun Dis Intell 2014;38(4):E279–E284.
Resumo:
Objectives ANTXR2 variants have been associated with ankylosing spondylitis (AS) in two previous genome-wide association studies (GWAS) (p∼9×10-8). However, a genome-wide significant association (p<5×10-8) was not observed. We conducted a more comprehensive analysis of ANTXR2 in an independent UK sample to confirm and refine this association. Methods A replication study was carried out with 2978 cases and 8365 controls. Then, these were combined with non-overlapping samples from the two previous GWAS in a meta-analysis. Human leukocyte antigen (HLA)-B27 stratification was also performed to test for ANTXR2-HLA-B27 interaction. Results Out of nine single nucleotide polymorphisms (SNP) in the study, five SNPs were nominally associated (p<0.05) with AS in the replication dataset. In the meta-analysis, eight SNPs showed evidence of association, the strongest being with rs12504282 (OR=0.88, p=6.7×10-9). Seven of these SNPs showed evidence for association in the HLA-B27-positive subgroup, but none was associated with HLA-B27-negative AS. However, no statistically significant interaction was detected between HLA-B27 and ANTXR2 variants. Conclusions ANTXR2 variants are clearly associated with AS. The top SNPs from two previous GWAS (rs4333130 and rs4389526) and this study (rs12504282) are in strong linkage disequilibrium (r2≥0.76). All are located near a putative regulatory region. Further studies are required to clarify the role played by these ANTXR2 variants in AS.
Resumo:
Aims: To investigate interactions between rumen protozoa and Shiga toxin-producing Escherichia coli (STEC) and to ascertain whether it is likely that rumen protozoa act as ruminant hosts for STEC. Methods and Results: The presence of stx genes in different microbial fractions recovered from cattle and sheep rumen contents and faeces was examined using PCR. In animals shedding faecal STEC, stx genes were not detected in the rumen bacterial or rumen protozoal fractions. Direct interactions between ruminal protozoa and STEC were investigated by in vitro co-incubation. Rumen protozoa did not appear to ingest STEC, a STEC lysogen or non-STEC E. coli populations when co-incubated. Conclusions: The ruminal environment is unlikely to be a preferred habitat for STEC. Bacterial grazing by rumen protozoa appears to have little, if any, effect on STEC populations. Significance and Impact of the Study: This study indicates that ruminal protozoa are unlikely to be a major factor in the survival of STEC in ruminants. They appear as neither a host that protects STEC from the ruminal environment nor a predator that might reduce STEC numbers.
Resumo:
Fractionation of methanolic extracts of air dried aerial parts ofParthenium resulted in the isolation of a toxic constituent which was identified as parthenin, the major sesquiterpene lactone from the weed. The LD50 (minimal lethal dose required to cause 50% mortality) for parthenin in rats was 42 mg/kg body weight. When [3H]-parthenin was given orally or by intravenous administration, radioactivity appeared in the milk of lactating laboratory and dairy animals. Tissue distribution of radioactivity revealed that maximum label was detectable in kidneys.