916 resultados para Panel model estimation
Resumo:
It is well known that there is a dynamic relationship between cerebral blood flow (CBF) and cerebral blood volume (CBV). With increasing applications of functional MRI, where the blood oxygen-level-dependent signals are recorded, the understanding and accurate modeling of the hemodynamic relationship between CBF and CBV becomes increasingly important. This study presents an empirical and data-based modeling framework for model identification from CBF and CBV experimental data. It is shown that the relationship between the changes in CBF and CBV can be described using a parsimonious autoregressive with exogenous input model structure. It is observed that neither the ordinary least-squares (LS) method nor the classical total least-squares (TLS) method can produce accurate estimates from the original noisy CBF and CBV data. A regularized total least-squares (RTLS) method is thus introduced and extended to solve such an error-in-the-variables problem. Quantitative results show that the RTLS method works very well on the noisy CBF and CBV data. Finally, a combination of RTLS with a filtering method can lead to a parsimonious but very effective model that can characterize the relationship between the changes in CBF and CBV.
Resumo:
This paper reviews nine software packages with particular reference to their GARCH model estimation accuracy when judged against a respected benchmark. We consider the numerical consistency of GARCH and EGARCH estimation and forecasting. Our results have a number of implications for published research and future software development. Finally, we argue that the establishment of benchmarks for other standard non-linear models is long overdue.
Resumo:
Despite the great importance of soybeans in Brazil, there have been few applications of soybean crop modeling on Brazilian conditions. Thus, the objective of this study was to use modified crop models to estimate the depleted and potential soybean crop yield in Brazil. The climatic variable data used in the modified simulation of the soybean crop models were temperature, insolation and rainfall. The data set was taken from 33 counties (28 Sao Paulo state counties, and 5 counties from other states that neighbor São Paulo). Among the models, modifications in the estimation of the leaf area of the soybean crop, which includes corrections for the temperature, shading, senescence, CO2, and biomass partition were proposed; also, the methods of input for the model's simulation of the climatic variables were reconsidered. The depleted yields were estimated through a water balance, from which the depletion coefficient was estimated. It can be concluded that the adaptation soybean growth crop model might be used to predict the results of the depleted and potential yield of soybeans, and it can also be used to indicate better locations and periods of tillage.
Resumo:
The nematode Caenorhabditis elegans is a well-known model organism used to investigate fundamental questions in biology. Motility assays of this small roundworm are designed to study the relationships between genes and behavior. Commonly, motility analysis is used to classify nematode movements and characterize them quantitatively. Over the past years, C. elegans' motility has been studied across a wide range of environments, including crawling on substrates, swimming in fluids, and locomoting through microfluidic substrates. However, each environment often requires customized image processing tools relying on heuristic parameter tuning. In the present study, we propose a novel Multi-Environment Model Estimation (MEME) framework for automated image segmentation that is versatile across various environments. The MEME platform is constructed around the concept of Mixture of Gaussian (MOG) models, where statistical models for both the background environment and the nematode appearance are explicitly learned and used to accurately segment a target nematode. Our method is designed to simplify the burden often imposed on users; here, only a single image which includes a nematode in its environment must be provided for model learning. In addition, our platform enables the extraction of nematode ‘skeletons’ for straightforward motility quantification. We test our algorithm on various locomotive environments and compare performances with an intensity-based thresholding method. Overall, MEME outperforms the threshold-based approach for the overwhelming majority of cases examined. Ultimately, MEME provides researchers with an attractive platform for C. elegans' segmentation and ‘skeletonizing’ across a wide range of motility assays.
Resumo:
Plane model extraction from three-dimensional point clouds is a necessary step in many different applications such as planar object reconstruction, indoor mapping and indoor localization. Different RANdom SAmple Consensus (RANSAC)-based methods have been proposed for this purpose in recent years. In this study, we propose a novel method-based on RANSAC called Multiplane Model Estimation, which can estimate multiple plane models simultaneously from a noisy point cloud using the knowledge extracted from a scene (or an object) in order to reconstruct it accurately. This method comprises two steps: first, it clusters the data into planar faces that preserve some constraints defined by knowledge related to the object (e.g., the angles between faces); and second, the models of the planes are estimated based on these data using a novel multi-constraint RANSAC. We performed experiments in the clustering and RANSAC stages, which showed that the proposed method performed better than state-of-the-art methods.
Resumo:
nlcheck is a simple diagnostic tool that can be used after fitting a model to quickly check the linearity assumption for a given predictor. nlcheck categorizes the predictor into bins, refits the model including dummy variables for the bins, and then performs a joint Wald test for the added parameters. Alternative, nlcheck uses linear splines for the adaptive model. Support for discrete variables is also provided. Optionally, nlcheck also displays a graph of the adjusted linear predictions from the original model and the adaptive model
Resumo:
This paper analyses, through a dynamic panel data model, the impact of the Financial and the European Debt crisis on the equity returns of the banking system. The model is also extended to specifically investigate the impact on countries who received rescue packages. The sample under analysis considers eleven countries from January 2006 to June 2013. The main conclusion is that there was in fact a structural change in banks’ excess returns due to the outbreak of the European Debt Crisis, when stock markets were still recovering from the Financial Crisis of 2008.
Resumo:
This paper demonstrates that, unlike what the conventional wisdom says, measurement error biases in panel data estimation of convergence using OLS with fixed effects are huge, not trivial. It does so by way of the "skipping estimation"': taking data from every m years of the sample (where m is an integer greater than or equal to 2), as opposed to every single year. It is shown that the estimated speed of convergence from the OLS with fixed effects is biased upwards by as much as 7 to 15%.
Resumo:
Understanding the performance of banks is of the u tmost importance due to the impact the sector may have on economic growth and financial stability. Residential mortgage loans constitute a large proportion of the portfolio of many banks and are one of the key assets in the determination of performance. Using a dynamic panel model , we analyse the impact of res idential mortgage loans on bank profitability and risk , based on a sample of 555 banks in the European Union ( EU - 15 ) , over the period from 1995 to 2008. We find that banks with larger weight s in residential mortgage loans display lower credit risk in good market conditions . This result may explain why banks rush to lend on property during b ooms due to the positive effect it has on credit risk . The results also show that credit risk and profitability are lower during the upturn in the residential property cy cle. Furthermore, t he results reveal the existence of a non - linear relationship ( U - shaped marginal effect), as a function of bank’s risk, between profitability and residential mortgage exposure . For those banks that have high er credit risk, a large exposur e to residential loans is associated with increased risk - adjusted profitability, through a reduction in risk. For banks with a moderate to low credit risk, the impact of higher exposure are also positive on risk - adjusted profitability.
Resumo:
This paper examines the relationship between the level of public infrastructure and the level of productivity using panel data for the Spanish provinces over the period 1984-2004, a period which is particularly relevant due to the substantial changes occurring in the Spanish economy at that time. The underlying model used for the data analysis is based on the wage equation, which is one of a handful of simultaneous equations which when satisfied correspond to the short-run equilibrium of New Economic Geography theory. This is estimated using a spatial panel model with fixed time and province effects, so that unmodelled space and time constant sources of heterogeneity are eliminated. The model assumes that productivity depends on the level of educational attainment and the public capital stock endowment of each province. The results show that although changes in productivity are positively associated with changes in public investment within the same province, there is a negative relationship between productivity changes and changes in public investment in other regions.
Resumo:
A new debate over the speed of convergence in per capita income across economies is going on. Cross sectional estimates support the idea of slow convergence of about two percent per year. Panel data estimates support the idea of fast convergence of five, ten or even twenty percent per year. This paper shows that, if you ``do it right'', even the panel data estimation method yields the result of slow convergence of about two percent per year.
Resumo:
PURPOSE: The aim of this study was to develop models based on kernel regression and probability estimation in order to predict and map IRC in Switzerland by taking into account all of the following: architectural factors, spatial relationships between the measurements, as well as geological information. METHODS: We looked at about 240,000 IRC measurements carried out in about 150,000 houses. As predictor variables we included: building type, foundation type, year of construction, detector type, geographical coordinates, altitude, temperature and lithology into the kernel estimation models. We developed predictive maps as well as a map of the local probability to exceed 300 Bq/m(3). Additionally, we developed a map of a confidence index in order to estimate the reliability of the probability map. RESULTS: Our models were able to explain 28% of the variations of IRC data. All variables added information to the model. The model estimation revealed a bandwidth for each variable, making it possible to characterize the influence of each variable on the IRC estimation. Furthermore, we assessed the mapping characteristics of kernel estimation overall as well as by municipality. Overall, our model reproduces spatial IRC patterns which were already obtained earlier. On the municipal level, we could show that our model accounts well for IRC trends within municipal boundaries. Finally, we found that different building characteristics result in different IRC maps. Maps corresponding to detached houses with concrete foundations indicate systematically smaller IRC than maps corresponding to farms with earth foundation. CONCLUSIONS: IRC mapping based on kernel estimation is a powerful tool to predict and analyze IRC on a large-scale as well as on a local level. This approach enables to develop tailor-made maps for different architectural elements and measurement conditions and to account at the same time for geological information and spatial relations between IRC measurements.
Resumo:
In this paper, we develop a theoretical model that considers a non-linear relationship between growth and level of education (human capital). Our econometric estimates demonstrated the causality running from human capital to GDP per capita with U inverted shape. The level of education (human capital) that generates the maximum growth rate lies around 4.5 years. The foremost implication of this result is that States with level of education below this range should have as priority educational policies.
Resumo:
Les fluctuations économiques représentent les mouvements de la croissance économique. Celle-ci peut connaître des phases d'accélération (expansion) ou de ralentissement (récession), voire même de dépression si la baisse de production est persistente. Les fluctuations économiques sont liées aux écarts entre croissance effective et croissance potentielle. Elles peuvent s'expliquer par des chocs d'offre et demande, ainsi que par le cycle du crédit. Dans le premier cas, les conditions de la production se trouvent modifiées. C'est le cas lorsque le prix des facteurs de production (salaires, prix des matières premières) ou que des facteurs externes influençant le prix des produits (taux de change) évolue. Ainsi, une hausse du prix des facteurs de production provoque un choc négatif et ralentit la croissance. Ce ralentissement peut être également dû à un choc de demande négatif provoqué par une hausse du prix des produits causée par une appréciation de la devise, engendrant une diminution des exportations. Le deuxième cas concerne les variables financières et les actifs financiers. Ainsi, en période d'expansion, les agents économiques s'endettent et ont des comportements spéculatifs en réaction à des chocs d'offre ou demande anticipés. La valeur des titres et actifs financiers augmente, provoquant une bulle qui finit par éclater et provoquer un effondrement de la valeur des biens. Dès lors, l'activité économique ne peut plus être financée. C'est ce qui génère une récession, parfois profonde, comme lors de la récente crise financière. Cette thèse inclut trois essais sur les fluctuations macroéconomiques et les cycles économiques, plus précisément sur les thèmes décrit ci-dessus. Le premier chapitre s'intéresse aux anticipations sur la politique monétaire et sur la réaction des agents écononomiques face à ces anticipations. Une emphase particulière est mise sur la consommation de biens durables et l'endettement relié à ce type de consommation. Le deuxième chapitre aborde la question de l'influence des variations du taux de change sur la demande de travail dans le secteur manufacturier canadien. Finalement, le troisième chapitre s'intéresse aux retombées économiques, parfois négatives, du marché immobilier sur la consommation des ménages et aux répercussions sur le prix des actifs immobiliers et sur l'endettement des ménages d'anticipations infondées sur la demande dans le marché immobilier. Le premier chapitre, intitulé ``Monetary Policy News Shocks and Durable Consumption'', fournit une étude sur le lien entre les dépenses en biens durables et les chocs monétaires anticipés. Nous proposons et mettons en oeuvre une nouvelle approche pour identifier les chocs anticipés (nouvelles) de politique monétaire, en les identifiant de manière récursive à partir des résidus d’une règle de Taylor estimée à l’aide de données de sondage multi-horizon. Nous utilisons ensuite les chocs anticipés inférer dans un modèle autorégressif vectoriel structurel (ARVS). L’anticipation d’une politique de resserrement monétaire mène à une augmentation de la production, de la consommation de biens non-durables et durables, ainsi qu’à une augmentation du prix réel des biens durables. Bien que les chocs anticipés expliquent une part significative des variations de la production et de la consommation, leur impact est moindre que celui des chocs non-anticipés sur les fluctuations économiques. Finalement, nous menons une analyse théorique avec un modèle d’équilibre général dynamique stochastique (EGDS) avec biens durables et rigidités nominales. Les résultats indiquent que le modèle avec les prix des biens durables rigides peut reproduire la corrélation positive entre les fonctions de réponse de la consommation de biens non-durables et durables à un choc anticipé de politique monétaire trouvées à l’aide du ARVS. Le second chapitre s'intitule ``Exchange Rate Fluctuations and Labour Market Adjustments in Canadian Manufacturing Industries''. Dans ce chapitre, nous évaluons la sensibilité de l'emploi et des heures travaillées dans les industries manufacturières canadiennes aux variations du taux de change. L’analyse est basée sur un modèle dynamique de demande de travail et utilise l’approche en deux étapes pour l'estimation des relations de cointégration en données de panel. Nos données sont prises d’un panel de 20 industries manufacturières, provenant de la base de données KLEMS de Statistique Canada, et couvrent une longue période qui inclut deux cycles complets d’appréciation-dépréciation de la valeur du dollar canadien. Les effets nets de l'appréciation du dollar canadien se sont avérés statistiquement et économiquement significatifs et négatifs pour l'emploi et les heures travaillées, et ses effets sont plus prononcés dans les industries davantage exposées au commerce international. Finalement, le dernier chapitre s'intitule ``Housing Market Dynamics and Macroprudential Policy'', dans lequel nous étudions la relation statistique suggérant un lien collatéral entre le marché immobilier and le reste de l'économique et si ce lien est davantage entraîné par des facteurs de demandes ou d'offres. Nous suivons également la littérature sur les chocs anticipés et examinons un cyle d'expansion-récession peut survenir de façon endogène la suite d'anticipations non-réalisées d'une hausse de la demande de logements. À cette fin, nous construisons un modèle néo-Keynésien au sein duquel le pouvoir d’emprunt du partie des consommateurs est limité par la valeur de leur patrimoine immobilier. Nous estimons le modèle en utilisant une méthode Bayésienne avec des données canadiennes. Nous évaluons la capacité du modèle à capter les caractéristiques principales de la consommation et du prix des maisons. Finalement, nous effectuons une analyse pour déterminer dans quelle mesure l'introduction d'un ratio prêt-à-la-valeur contracyclique peut réduire l'endettement des ménages et les fluctuations du prix des maisons comparativement à une règle de politique monétaire répondant à l'inflation du prix des maisons. Nous trouvons une relation statistique suggérant un important lien collatéral entre le marché immobilier et le reste de l'économie, et ce lien s'explique principalement par des facteurs de demande. Nous constatons également que l'introduction de chocs anticipés peut générer un cycle d'expansion-récession du marché immobilier, la récession faisant suite aux attentes non-réalisées par rapport à la demande de logements. Enfin, notre étude suggère également qu'un ratio contracyclique de prêt-à-la-valeur est une politique utile pour réduire les retombées du marché du logement sur la consommation par l'intermédiaire de la valeur garantie.